Abstract:
There are several schemes (coherent configurations) associated with a finite projective plane P. In the paper, a new scheme is constructed, which, in a sense, contains all of them. It turns out that this scheme coincides with the 2-extension of the nonhomogeneous scheme of P, and is uniquely determined up to similarity by the order q of P. Moreover, for q⩾3 the rank of the scheme does not depend on q and equals 416. The results obtained have interesting applications in the theory of multidimensional extensions of schemes and similarities.
Citation:
S. A. Evdokimov, I. N. Ponomarenko, “Schemes of relations of the finite projective plane, and their extensions”, Algebra i Analiz, 21:1 (2009), 90–132; St. Petersburg Math. J., 21:1 (2010), 65–93
\Bibitem{EvdPon09}
\by S.~A.~Evdokimov, I.~N.~Ponomarenko
\paper Schemes of relations of the finite projective plane, and their extensions
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 1
\pages 90--132
\mathnet{http://mi.mathnet.ru/aa996}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553053}
\zmath{https://zbmath.org/?q=an:1231.05123}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 1
\pages 65--93
\crossref{https://doi.org/10.1090/S1061-0022-09-01086-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273495900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871029987}
Linking options:
https://www.mathnet.ru/eng/aa996
https://www.mathnet.ru/eng/aa/v21/i1/p90
This publication is cited in the following 6 articles:
Abbas W., Hirasaka M., “Association Schemes With a Certain Type of P-Subschemes”, ARS Math. Contemp., 19:1 (2020), 51–60
Nedela R., Ponomarenko I., “Recognizing and Testing Isomorphism of Cayley Graphs Over An Abelian Group of Order 4P in Polynomial Time”, Isomorphisms, Symmetry and Computations in Algebraic Graph Theory, Springer Proceedings in Mathematics & Statistics, 305, eds. Jones G., Ponomarenko I., Siran J., Springer International Publishing Ag, 2020, 195–218
Hirasaka M., Kim K., Ponomarenko I., “Schurity and Separability of Quasiregular Coherent Configurations”, J. Algebra, 510 (2018), 180–204
Muzychuk M., Ponomarenko I., “On quasi-thin association schemes”, J. Algebra, 351:1 (2012), 467–489
Kim K., “Terwilliger algebras of wreath products by quasi-thin schemes”, Linear Algebra Appl., 437:11 (2012), 2773–2780
Evdokimov S., Ponomarenko I., “Permutation group approach to association schemes”, European J. Combin., 30:6 (2009), 1456–1476