Abstract:
It is proved that the second cohomology group of the conformal algebras Cendn and Curn with coefficients in any bimodule is trivial. As a result, these algebras are segregated in any extension with a nilpotent kernel.
Keywords:
associative conformal algebra, algebra of conformal endomorphisms, Hochschild cohomology.
Citation:
I. A. Dolguntseva, “Triviality of the second cohomology group of the conformal algebras Cendn and Curn”, Algebra i Analiz, 21:1 (2009), 74–89; St. Petersburg Math. J., 21:1 (2010), 53–63
\Bibitem{Dol09}
\by I.~A.~Dolguntseva
\paper Triviality of the second cohomology group of the conformal algebras $\mathrm{Cend}_n$ and $\mathrm{Cur}_n$
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 1
\pages 74--89
\mathnet{http://mi.mathnet.ru/aa862}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553052}
\zmath{https://zbmath.org/?q=an:1200.13022}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 1
\pages 53--63
\crossref{https://doi.org/10.1090/S1061-0022-09-01085-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273495900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871006566}
Linking options:
https://www.mathnet.ru/eng/aa862
https://www.mathnet.ru/eng/aa/v21/i1/p74
This publication is cited in the following 8 articles:
Sania Asif, Yao Wang, Zhixiang Wu, “RB-operator and Nijenhuis operator on Hom-associative conformal algebra”, J. Algebra Appl., 23:11 (2024)
Bo Hou, Zhongxi Shen, Jun Zhao, “Gerstenhaber algebra of the Hochschild cohomology of an associative conformal algebra”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117:2 (2023)
R. A. Kozlov, “Tochnye predstavleniya konechnogo tipa konformnykh algebr Li”, Algebra i logika, 62:3 (2023), 408–414
Lamei Yuan, “O-operators and Nijenhuis operators of associative conformal algebras”, Journal of Algebra, 609 (2022), 245
Kolesnikov P.S., Kozlov R.A., “On the Hochschild Cohomologies of Associative Conformal Algebras With a Finite Faithful Representation”, Commun. Math. Phys., 369:1 (2019), 351–370
R. A. Kozlov, “Hochschild cohomologies of the associative conformal algebra Cend1,x”, Algebra and Logic, 58:1 (2019), 36–47
P. S. Kolesnikov, R. A. Kozlov, “Molien–Wedderburn theorem for associative conformal algebras with finite faithful representation”, Algebra and Logic, 56:5 (2017), 427–428
Zhang J., “on the Cohomology of Leibniz Conformal Algebras”, J. Math. Phys., 56:4 (2015), 041703