Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2009, Volume 21, Issue 1, Pages 74–89 (Mi aa862)  

This article is cited in 8 scientific papers (total in 8 papers)

Triviality of the second cohomology group of the conformal algebras Cendn and Curn

I. A. Dolguntseva

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Full-text PDF (281 kB) Citations (8)
References:
Abstract: It is proved that the second cohomology group of the conformal algebras Cendn and Curn with coefficients in any bimodule is trivial. As a result, these algebras are segregated in any extension with a nilpotent kernel.
Keywords: associative conformal algebra, algebra of conformal endomorphisms, Hochschild cohomology.
Received: 05.02.2008
English version:
St. Petersburg Mathematical Journal, 2010, Volume 21, Issue 1, Pages 53–63
DOI: https://doi.org/10.1090/S1061-0022-09-01085-1
Bibliographic databases:
MSC: 13D03
Language: Russian
Citation: I. A. Dolguntseva, “Triviality of the second cohomology group of the conformal algebras Cendn and Curn”, Algebra i Analiz, 21:1 (2009), 74–89; St. Petersburg Math. J., 21:1 (2010), 53–63
Citation in format AMSBIB
\Bibitem{Dol09}
\by I.~A.~Dolguntseva
\paper Triviality of the second cohomology group of the conformal algebras $\mathrm{Cend}_n$ and $\mathrm{Cur}_n$
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 1
\pages 74--89
\mathnet{http://mi.mathnet.ru/aa862}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553052}
\zmath{https://zbmath.org/?q=an:1200.13022}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 1
\pages 53--63
\crossref{https://doi.org/10.1090/S1061-0022-09-01085-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273495900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871006566}
Linking options:
  • https://www.mathnet.ru/eng/aa862
  • https://www.mathnet.ru/eng/aa/v21/i1/p74
  • This publication is cited in the following 8 articles:
    1. Sania Asif, Yao Wang, Zhixiang Wu, “RB-operator and Nijenhuis operator on Hom-associative conformal algebra”, J. Algebra Appl., 23:11 (2024)  crossref
    2. Bo Hou, Zhongxi Shen, Jun Zhao, “Gerstenhaber algebra of the Hochschild cohomology of an associative conformal algebra”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117:2 (2023)  crossref
    3. R. A. Kozlov, “Tochnye predstavleniya konechnogo tipa konformnykh algebr Li”, Algebra i logika, 62:3 (2023), 408–414  mathnet  crossref
    4. Lamei Yuan, “O-operators and Nijenhuis operators of associative conformal algebras”, Journal of Algebra, 609 (2022), 245  crossref
    5. Kolesnikov P.S., Kozlov R.A., “On the Hochschild Cohomologies of Associative Conformal Algebras With a Finite Faithful Representation”, Commun. Math. Phys., 369:1 (2019), 351–370  crossref  mathscinet  isi
    6. R. A. Kozlov, “Hochschild cohomologies of the associative conformal algebra Cend1,x”, Algebra and Logic, 58:1 (2019), 36–47  mathnet  crossref  crossref  isi
    7. P. S. Kolesnikov, R. A. Kozlov, “Molien–Wedderburn theorem for associative conformal algebras with finite faithful representation”, Algebra and Logic, 56:5 (2017), 427–428  mathnet  crossref  crossref  isi
    8. Zhang J., “on the Cohomology of Leibniz Conformal Algebras”, J. Math. Phys., 56:4 (2015), 041703  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:467
    Full-text PDF :146
    References:56
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025