Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2006, Volume 18, Issue 6, Pages 1–130 (Mi aa95)  

This article is cited in 94 scientific papers (total in 94 papers)

Expository Surveys

Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class $H^1(\mathbb R^d)$

M. Sh. Birman, T. A. Suslina

St. Petersburg State University, Faculty of Physics
References:
Abstract: Investigation of a class of matrix periodic elliptic second-order differential operators $\mathcal A_\varepsilon$ in $\mathbb R^d$ with rapidly oscillating coefficients (depending on $\mathbf x/\varepsilon$) is continued. The homogenization problem in the small period limit is studied. Approximation for the resolvent $(\mathcal A_\varepsilon+I)^{-1}$ in the operator norm from $L_2(\mathbb R^d)$ to $H^1(\mathbb R^d)$ is obtained with an error of order $\varepsilon$. In this approximation, a corrector is taken into account. Moreover, the ($L_2\to L_2$)-approximations of the so-called fluxes are obtained.
Received: 20.09.2006
English version:
St. Petersburg Mathematical Journal, 2007, Volume 18, Issue 6, Pages 857–955
DOI: https://doi.org/10.1090/S1061-0022-07-00977-6
Bibliographic databases:
Document Type: Article
MSC: 35P99, 35Q99
Language: Russian
Citation: M. Sh. Birman, T. A. Suslina, “Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class $H^1(\mathbb R^d)$”, Algebra i Analiz, 18:6 (2006), 1–130; St. Petersburg Math. J., 18:6 (2007), 857–955
Citation in format AMSBIB
\Bibitem{BirSus06}
\by M.~Sh.~Birman, T.~A.~Suslina
\paper Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class~$H^1(\mathbb R^d)$
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 6
\pages 1--130
\mathnet{http://mi.mathnet.ru/aa95}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2307356}
\zmath{https://zbmath.org/?q=an:1153.35012}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 6
\pages 857--955
\crossref{https://doi.org/10.1090/S1061-0022-07-00977-6}
Linking options:
  • https://www.mathnet.ru/eng/aa95
  • https://www.mathnet.ru/eng/aa/v18/i6/p1
  • This publication is cited in the following 94 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:952
    Full-text PDF :295
    References:100
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024