-
T. A. Suslina, “Homogenization of the Higher-Order Hyperbolic Equations with Periodic Coefficients”, Lobachevskii J Math, 42:14 (2021), 3518
-
V. A. Sloushch, T. A. Suslina, “Threshold approximations for the resolvent of a polynomial nonnegative operator pencil”, St. Petersburg Math. J., 33:2 (2022), 355–385
-
M. Dorodnyi, T. A. Suslina, “Operator error estimates for homogenization of hyperbolic equations”, Funct. Anal. Appl., 54:1 (2020), 53–58
-
V. A. Sloushch, T. A. Suslina, “Homogenization of the Fourth-Order Elliptic Operator with Periodic Coefficients with Correctors Taken into Account”, Funct. Anal. Appl., 54:3 (2020), 224–228
-
M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in ${\mathbb R}^d$: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703
-
T. A. Suslina, “Ob usrednenii statsionarnoi periodicheskoi sistemy Maksvella v ogranichennoi oblasti”, Funkts. analiz i ego pril., 53:1 (2019), 88–92
-
Suslina T.A., “Homogenization of Higher-Order Parabolic Systems in a Bounded Domain”, Appl. Anal., 98:1-2, SI (2019), 3–31
-
Yu. M. Meshkova, “On the Homogenization of Periodic Hyperbolic Systems”, Math. Notes, 105:6 (2019), 929–934
-
Yu. M. Meshkova, “Homogenization of periodic parabolic systems in the $ L_2(\mathbb{R}^d)$-norm with the corrector taken into account”, St. Petersburg Math. J., 31:4 (2020), 675–718
-
M. A. Dorodnyi, “Homogenization of periodic Schrödinger-type equations, with lower order terms”, St. Petersburg Math. J., 31:6 (2020), 1001–1054
-
Suslina T.A., “Homogenization of the Stationary Maxwell System With Periodic Coefficients in a Bounded Domain”, Arch. Ration. Mech. Anal., 234:2 (2019), 453–507
-
Suslina T.A., “Homogenization of the Neumann Problem For Higher Order Elliptic Equations With Periodic Coefficients”, Complex Var. Elliptic Equ., 63:7-8, SI (2018), 1185–1215
-
Dorodnyi M.A., Suslina T.A., “Spectral Approach to Homogenization of Hyperbolic Equations With Periodic Coefficients”, J. Differ. Equ., 264:12 (2018), 7463–7522
-
Suslina T.A., “Spectral Approach to Homogenization of Elliptic Operators in a Perforated Space”, Rev. Math. Phys., 30:8, SI (2018), 1840016
-
T. A. Suslina, “Homogenization of a stationary periodic Maxwell system in a bounded domain with constant magnetic permeability”, St. Petersburg Math. J., 30:3 (2019), 515–544
-
Khrabustovskyi A., Post O., “Operator Estimates For the Crushed Ice Problem”, Asymptotic Anal., 110:3-4 (2018), 137–161
-
D. I. Borisov, A. I. Mukhametrakhimova, “The Norm Resolvent Convergence for Elliptic Operators in Multi-Dimensional Domains with Small Holes”, J Math Sci, 232:3 (2018), 283
-
Suslina T., “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, J. Math. Anal. Appl., 446:2 (2017), 1466–1523
-
T. A. Suslina, “Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients”, St. Petersburg Math. J., 29:2 (2018), 325–362
-
Yu. M. Meshkova, T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic and parabolic systems with periodic coefficients”, Funct. Anal. Appl., 51:3 (2017), 230–235