Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2009, Volume 21, Issue 1, Pages 3–60 (Mi aa858)  

This article is cited in 32 scientific papers (total in 32 papers)

Homogenization with a corrector for a parabolic Cauchy problem with periodic coefficients

E. S. Vasilevskaya

St. Petersburg State University, Faculty of Physics, St. Petersburg, Russia
References:
Abstract: A wide class of matrix elliptic second-order differential operators $\mathcal{A}=\mathcal{A}(\mathbf{x},\mathbf{D})$ with periodic coefficients, acting in $L_2(\mathbb{R}^d;\mathbb{C}^n)$, is studied. The operator $\mathcal{A}$ is assumed to admit a factorization of the form $\mathcal{A}=\mathcal{X}^*\mathcal{X}$, where $\mathcal{X}$ is a homogeneous first-order differential operator. Approximation for the operator exponential $e^{-\mathcal{A}\tau}$ as $\tau\rightarrow\infty$ in the $(L_2(\mathbb{R}^d;\mathbb{C}^n))$-operator norm is obtained, with error estimate of order of $\tau^{-1}$. In approximation, a corrector is taken into account. The result is applied to the study of homogenization for solutions of the Cauchy problem $\partial_\tau\mathbf{u}_\varepsilon=-\mathcal{A}_\varepsilon\mathbf{u}_\varepsilon$, where $\mathcal{A}_\varepsilon=\mathcal{A}(\mathbf{x}/\varepsilon,\mathbf{D})$. Approximation with corrector for $\mathbf{u}_\varepsilon$ in the $(L_2(\mathbb{R}^d;\mathbb{C}^n))$-norm is obtained for fixed $\tau>0$, with error estimate of order of $\varepsilon^2$.
Keywords: parabolic Cauchy problem, homogenization, effective operator, corrector.
Received: 01.09.2008
English version:
St. Petersburg Mathematical Journal, 2010, Volume 21, Issue 1, Pages 1–41
DOI: https://doi.org/10.1090/S1061-0022-09-01083-8
Bibliographic databases:
MSC: 35B27, 35K30
Language: Russian
Citation: E. S. Vasilevskaya, “Homogenization with a corrector for a parabolic Cauchy problem with periodic coefficients”, Algebra i Analiz, 21:1 (2009), 3–60; St. Petersburg Math. J., 21:1 (2010), 1–41
Citation in format AMSBIB
\Bibitem{Vas09}
\by E.~S.~Vasilevskaya
\paper Homogenization with a~corrector for a~parabolic Cauchy problem with periodic coefficients
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 1
\pages 3--60
\mathnet{http://mi.mathnet.ru/aa858}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553050}
\zmath{https://zbmath.org/?q=an:1203.35027}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 1
\pages 1--41
\crossref{https://doi.org/10.1090/S1061-0022-09-01083-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273495900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870984199}
Linking options:
  • https://www.mathnet.ru/eng/aa858
  • https://www.mathnet.ru/eng/aa/v21/i1/p3
  • This publication is cited in the following 32 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:1121
    Full-text PDF :354
    References:107
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024