1. Pastukhova S.E., “Large-Time Asymptotics of the Fundamental Solution to a Periodic Diffusion Equation and Its Applications”, Proceedings of the International Conference Days on Diffraction (Dd) 2017, ed. Motygin O. Kiselev A. Goray L. Suslina T. Kazakov A. Kirpichnikova A., IEEE, 2017, 258–263  crossref  isi  scopus
  2. T. A. Suslina, “Homogenization of Schrödinger-Type equations”, Funct. Anal. Appl., 50:3 (2016), 241–246  mathnet  crossref  crossref  mathscinet  isi  elib
  3. Meshkova Yu.M. Suslina T.A., “Homogenization of initial boundary value problems for parabolic systems with periodic coefficients”, Appl. Anal., 95:8 (2016), 1736–1775  crossref  mathscinet  zmath  isi  elib  scopus
  4. Yu. M. Meshkova, T. A. Suslina, “Homogenization of Solutions of Initial Boundary Value Problems for Parabolic Systems”, Funct. Anal. Appl., 49:1 (2015), 72–76  mathnet  crossref  crossref  zmath  isi  elib
  5. Yu. M. Meshkova, “Homogenization of the Cauchy problem for parabolic systems with periodic coefficients”, St. Petersburg Math. J., 25:6 (2014), 981–1019  mathnet  crossref  mathscinet  zmath  isi  elib
  6. E. S. Vasilevskaya, T. A. Suslina, “Homogenization of parabolic and elliptic periodic operators in $L_2(\mathbb R^d)$ with the first and second correctors taken into account”, St. Petersburg Math. J., 24:2 (2013), 185–261  mathnet  crossref  mathscinet  zmath  isi  elib  elib
  7. S. E. Pastukhova, “Approximations of the exponential of an operator with periodic coefficients”, J Math Sci, 181:5 (2012), 668  crossref
  8. E. S. Vasilevskaya, T. A. Suslina, “Threshold approximations of a factorized selfadjoint operator family with the first and the second correctors taken into account”, St. Petersburg Math. J., 23:2 (2012), 275–308  mathnet  crossref  mathscinet  zmath  isi  elib  elib
  9. T. A. Suslina, “Homogenization of the Parabolic Cauchy Problem in the Sobolev Class $H^1(\mathbb{R}^d)$”, Funct. Anal. Appl., 44:4 (2010), 318–322  mathnet  crossref  crossref  mathscinet  zmath  isi
  10. Suslina T., “Homogenization of a Periodic Parabolic Cauchy Problem in the Sobolev Space H-1(R-d)”, Mathematical Modelling of Natural Phenomena, 5:4 (2010), 390–447  crossref  mathscinet  zmath  isi  scopus
  11. M. Sh. Birman, T. A. Suslina, “Operator error estimates in the homogenization problem for nonstationary periodic equations”, St. Petersburg Math. J., 20:6 (2009), 873–928  mathnet  crossref  mathscinet  zmath  isi
Previous
1
2