Abstract:
A formula is presented for the exact Bellman function of a certain “toy” two-weight problem. This adds one more function to a short list of other Bellman functions for which the precise expressions have recently been found. The case study reveals essential features of finding Bellman functions in general and gives the extremal sequences for the problem. Some open questions are posed.
Citation:
V. Vasyunin, A. Vol'berg, “The Bellman functions for a certain two-weight inequality: A case study”, Algebra i Analiz, 18:2 (2006), 24–56; St. Petersburg Math. J., 18:2 (2007), 201–222
\Bibitem{VasVol06}
\by V.~Vasyunin, A.~Vol'berg
\paper The Bellman functions for a certain two-weight inequality: A~case study
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 2
\pages 24--56
\mathnet{http://mi.mathnet.ru/aa67}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2244935}
\zmath{https://zbmath.org/?q=an:1125.47025}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 2
\pages 201--222
\crossref{https://doi.org/10.1090/S1061-0022-07-00953-3}
Linking options:
https://www.mathnet.ru/eng/aa67
https://www.mathnet.ru/eng/aa/v18/i2/p24
This publication is cited in the following 33 articles:
Osekowski A. Rapicki M., “Sharp Lorentz-Norm Estimates For Dyadic-Like Maximal Operators”, Studia Math., 257:1 (2021), 87–110
Nikolidakis E.N., “A Sharp Integral Inequality For the Dyadic Maximal Operator and a Related Stability Result”, Ann. Acad. Sci. Fenn. Ser. A1-Math., 45 (2020), 533–546
Delis A.D. Nikolidakis E.N., “Sharp Integral Inequalities For the Dyadic Maximal Operator and Applications”, Math. Z., 291:3-4 (2019), 1197–1209
Melas A.D., “An Eigenfunction Stability Estimate For Approximate Extremals of the Bellman Function For the Dyadic Maximal Operator on l-P”, Proc. Amer. Math. Soc., 147:8 (2019), 3367–3375
Nikolidakis E.N., “Extremal Sequences For the Bellman Function of Three Variables of the Dyadic Maximal Operator Related to Kolmogorov'S Inequality”, Trans. Am. Math. Soc., 372:9 (2019), 6315–6342
Delis A.D. Nikolidakis E.N., “Sharp and General Estimates For the Bellman Function of Three Integral Variables Related to the Dyadic Maximal Operator”, Colloq. Math., 153:1 (2018), 27–37
Melas A.D. Nikolidakis E.N., “Sharp Lorentz Estimates For Dyadic-Like Maximal Operators and Related Bellman Functions”, J. Geom. Anal., 27:4 (2017), 2644–2657
Nikolidakis E.N., “Extremal Sequences For the Bellman Function of the Dyadic Maximal Operator and Applications to the Hardy Operator”, Can. J. Math.-J. Can. Math., 69:6 (2017), 1364–1384
Melas A.D. Nikolidakis E.N., “Local Lower Norm Estimates For Dyadic Maximal Operators and Related Bellman Functions”, J. Geom. Anal., 27:3 (2017), 1940–1950
Nikolidakis E.N., “the Bellman Function of the Dyadic Maximal Operator Related to Kolmogorov'S Inequality”, Isr. J. Math., 219:2 (2017), 507–528
Melas A.D. Nikolidakis E.N. Cheliotis D., “Estimates For Bellman Functions Related to Dyadic-Like Maximal Operators on Weighted Spaces”, Studia Math., 239:1 (2017), 1–16
Janakiraman P. Volberg A., “New Bellman Functions and Subordination By Orthogonal Martingales in l-P, 1 < P <= 2”, Harmonic Analysis, Partial Differential Equations and Applications: in Honor of Richard l. Wheeden, Applied and Numerical Harmonic Analysis, ed. Chanillo S. Franchi B. Lu G. Perez C. Sawyer E., Springer International Publishing Ag, 2017, 239–273
Slavin L., “Best Constants For a Family of Carleson Sequences”, Adv. Math., 289 (2016), 685–724
Ivanisvili P. Osipov N.N. Stolyarov D.M. Vasyunin V.I. Zatitskiy P.B., “Bellman function for extremal problems in BMO”, Trans. Am. Math. Soc., 368:5 (2016), 3415–3468
Osekowski A., “Sharp Estimates for Lipschitz Class”, J. Geom. Anal., 26:2 (2016), 1346–1369
Osekowski A., “Sharp Logarithmic Inequalities for Hardy Operators”, Z. Anal. ihre. Anwend., 35:1 (2016), 1–20
Stolyarov D.M. Zatitskiy P.B., “Theory of locally concave functions and its applications to sharp estimates of integral functionals”, Adv. Math., 291 (2016), 228–273
Nikolidakis E.N. Melas A.D., “A Sharp Integral Rearrangement Inequality For the Dyadic Maximal Operator and Applications”, Appl. Comput. Harmon. Anal., 38:2 (2015), 242–261
Osekowski A., “A Splitting Procedure For Bellman Functions and the Action of Dyadic Maximal Operators on l-P”, Mathematika, 61:1 (2015), 199–212
Ivanisvili P. Osipov N.N. Stolyarov D.M. Vasyunin V.I. Zatitskiy P.B., “Sharp Estimates of Integral Functionals on Classes of Functions With Small Mean Oscillation”, C. R. Math., 353:12 (2015), 1081–1085