Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2006, Volume 18, Issue 2, Pages 1–23 (Mi aa66)  

This article is cited in 12 scientific papers (total in 12 papers)

Research Papers

On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids

M. Bildhauera, M. Fuchsa, X. Zhongb

a Department of Mathematics, Saarland University, Saarbrücken, Germany
b Department of Mathematics and Statistics, University of Jyväskylä, Finland
References:
Abstract: A system of nonautonomous partial differential equations describing the steady flow of an incompressible fluid is considered. The existence of a strong solution of that system is proved under suitable assumptions on the data. In the 2D-case this solution turns out to be of class C1,α.
Keywords: generalized Newtonian fluids, anisotropic dissipative potentials, existence and regularity of solutions.
Received: 31.10.2005
English version:
St. Petersburg Mathematical Journal, 2007, Volume 18, Issue 2, Pages 183–199
DOI: https://doi.org/10.1090/S1061-0022-07-00948-X
Bibliographic databases:
Document Type: Article
MSC: 76M30, 76B03, 35Q35
Language: English
Citation: M. Bildhauer, M. Fuchs, X. Zhong, “On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids”, Algebra i Analiz, 18:2 (2006), 1–23; St. Petersburg Math. J., 18:2 (2007), 183–199
Citation in format AMSBIB
\Bibitem{BilFucZho06}
\by M.~Bildhauer, M.~Fuchs, X.~Zhong
\paper On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 2
\pages 1--23
\mathnet{http://mi.mathnet.ru/aa66}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2244934}
\zmath{https://zbmath.org/?q=an:1129.35061}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 2
\pages 183--199
\crossref{https://doi.org/10.1090/S1061-0022-07-00948-X}
Linking options:
  • https://www.mathnet.ru/eng/aa66
  • https://www.mathnet.ru/eng/aa/v18/i2/p1
  • This publication is cited in the following 12 articles:
    1. Moussa H., Rhoudaf M., Sabiki H., “Existence Results For a Perturbed Dirichlet Problem Without Sign Condition in Orlicz Spaces”, Ukr. Math. J., 72:4 (2020), 585–606  crossref  mathscinet  isi
    2. H. Moussa, M. Rhoudaf, H. Sabiki, “Existence results for a perturbed Dirichlet problem without sign condition in Orlicz spaces”, Ukr. Mat. Zhurn., 72:4 (2020), 509  crossref
    3. Moussa H., Ortegon Gallego F., Rhoudaf M., “Capacity Solution to a Coupled System of Parabolic-Elliptic Equations in Orlicz-Sobolev Spaces”, NoDea-Nonlinear Differ. Equ. Appl., 25:2 (2018), 14  crossref  mathscinet  zmath  isi
    4. Bae H.-O., So H., Youn Y., “Interior Regularity to the Steady Incompressible Shear Thinning Fluids With Non-Standard Growth”, Netw. Heterog. Media, 13:3 (2018), 479–491  crossref  mathscinet  isi  scopus
    5. Moussa H., Rhoudaf M., Sabiki H., “Existence Results For Diffusion-Convection Equations of Nonlinear Unilateral Problems Defined in Orlicz-Sobolev Spaces”, Asian-Eur. J. Math., 11:6 (2018), 1850079  crossref  mathscinet  zmath  isi  scopus
    6. Bildhauer M., Fuchs M., Mueller J., “Existence and Regularity For Stationary Incompressible Flows With Dissipative Potentials of Linear Growth”, J. Math. Fluid Mech., 20:4 (2018), 1567–1587  crossref  mathscinet  zmath  isi  scopus
    7. Moussa H., Rhoudaf M., “Existence of Renormalized Solution of Nonlinear Elliptic Problems With Lower Order Term in Orlicz Spaces”, Ric. Mat., 66:2 (2017), 591–617  crossref  mathscinet  zmath  isi  scopus
    8. Berselli L.C., Breit D., Diening L., “Convergence analysis for a finite element approximation of a steady model for electrorheological fluids”, Numer. Math., 132:4 (2016), 657–689  crossref  mathscinet  zmath  isi  scopus
    9. Moussa H., Rhoudaf M., “Study of Some Non-linear Elliptic Problems with No Continuous Lower Order Terms in Orlicz Spaces”, Mediterr. J. Math., 13:6 (2016), 4867–4899  crossref  mathscinet  zmath  isi  elib  scopus
    10. Fuchs M., “A note on non-uniformly elliptic Stokes-type systems in two variables”, J. Math. Fluid Mech., 12:2 (2010), 266–279  crossref  mathscinet  zmath  adsnasa  isi  scopus
    11. Beirão da Veiga H., “On the global regularity of shear thinning flows in smooth domains”, J. Math. Anal. Appl., 349:2 (2009), 335–360  crossref  mathscinet  zmath  isi  scopus
    12. Crispo F., Grisanti C.R., “On the $C^{1,\gamma}(\overline\Omega)\cap W^{2,2}(\Omega)$ regularity for a class of electro-rheological fluids”, J. Math. Anal. Appl., 356:1 (2009), 119–132  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :119
    References:69
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025