Abstract:
A system of nonautonomous partial differential equations describing the steady flow of an incompressible fluid is considered. The existence of a strong solution of that system is proved under suitable assumptions on the data. In the 2D-case this solution turns out to be of class C1,α.
Keywords:
generalized Newtonian fluids, anisotropic dissipative potentials, existence and regularity of solutions.
Citation:
M. Bildhauer, M. Fuchs, X. Zhong, “On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids”, Algebra i Analiz, 18:2 (2006), 1–23; St. Petersburg Math. J., 18:2 (2007), 183–199
\Bibitem{BilFucZho06}
\by M.~Bildhauer, M.~Fuchs, X.~Zhong
\paper On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 2
\pages 1--23
\mathnet{http://mi.mathnet.ru/aa66}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2244934}
\zmath{https://zbmath.org/?q=an:1129.35061}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 2
\pages 183--199
\crossref{https://doi.org/10.1090/S1061-0022-07-00948-X}
Linking options:
https://www.mathnet.ru/eng/aa66
https://www.mathnet.ru/eng/aa/v18/i2/p1
This publication is cited in the following 12 articles:
Moussa H., Rhoudaf M., Sabiki H., “Existence Results For a Perturbed Dirichlet Problem Without Sign Condition in Orlicz Spaces”, Ukr. Math. J., 72:4 (2020), 585–606
H. Moussa, M. Rhoudaf, H. Sabiki, “Existence results for a perturbed Dirichlet problem without sign condition in Orlicz spaces”, Ukr. Mat. Zhurn., 72:4 (2020), 509
Moussa H., Ortegon Gallego F., Rhoudaf M., “Capacity Solution to a Coupled System of Parabolic-Elliptic Equations in Orlicz-Sobolev Spaces”, NoDea-Nonlinear Differ. Equ. Appl., 25:2 (2018), 14
Bae H.-O., So H., Youn Y., “Interior Regularity to the Steady Incompressible Shear Thinning Fluids With Non-Standard Growth”, Netw. Heterog. Media, 13:3 (2018), 479–491
Moussa H., Rhoudaf M., Sabiki H., “Existence Results For Diffusion-Convection Equations of Nonlinear Unilateral Problems Defined in Orlicz-Sobolev Spaces”, Asian-Eur. J. Math., 11:6 (2018), 1850079
Bildhauer M., Fuchs M., Mueller J., “Existence and Regularity For Stationary Incompressible Flows With Dissipative Potentials of Linear Growth”, J. Math. Fluid Mech., 20:4 (2018), 1567–1587
Moussa H., Rhoudaf M., “Existence of Renormalized Solution of Nonlinear Elliptic Problems With Lower Order Term in Orlicz Spaces”, Ric. Mat., 66:2 (2017), 591–617
Berselli L.C., Breit D., Diening L., “Convergence analysis for a finite element approximation of a steady model for electrorheological fluids”, Numer. Math., 132:4 (2016), 657–689
Moussa H., Rhoudaf M., “Study of Some Non-linear Elliptic Problems with No Continuous Lower Order Terms in Orlicz Spaces”, Mediterr. J. Math., 13:6 (2016), 4867–4899
Fuchs M., “A note on non-uniformly elliptic Stokes-type systems in two variables”, J. Math. Fluid Mech., 12:2 (2010), 266–279
Beirão da Veiga H., “On the global regularity of shear thinning flows in smooth domains”, J. Math. Anal. Appl., 349:2 (2009), 335–360
Crispo F., Grisanti C.R., “On the $C^{1,\gamma}(\overline\Omega)\cap W^{2,2}(\Omega)$ regularity for a class of electro-rheological fluids”, J. Math. Anal. Appl., 356:1 (2009), 119–132