Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2006, Volume 18, Issue 1, Pages 34–54 (Mi aa59)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

A minimal area problem for nonvanishing functions

R. W. Barnarda, C. Richardsonb, A. Yu. Solynina

a Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX
b Department of Mathematics and Statistics, Stephen F. Austin State University, Nacogdoches, TX
Full-text PDF (204 kB) Citations (3)
References:
Abstract: The minimal area covered by the image of the unit disk is found for nonvanishing univalent functions normalized by the conditions $f(0)=1$, $f'(0)=\alpha$. Two different approaches are discussed, each of which contributes to the complete solution of the problem. The first approach reduces the problem, via symmetrization, to the class of typically real functions, where the well-known integral representation can be employed to obtain the solution upon a priori knowledge of the extremal function. The second approach, requiring smoothness assumptions, leads, via some variational formulas, to a boundary value problem for analytic functions, which admits an explicit solution.
Keywords: minimal area problem, nonvanishing analytic function, typically real function, symmetrization.
Received: 15.08.2005
English version:
St. Petersburg Mathematical Journal, 2007, Volume 18, Issue 1, Pages 21–36
DOI: https://doi.org/10.1090/S1061-0022-06-00941-1
Bibliographic databases:
Document Type: Article
MSC: 30C70, 30E20
Language: English
Citation: R. W. Barnard, C. Richardson, A. Yu. Solynin, “A minimal area problem for nonvanishing functions”, Algebra i Analiz, 18:1 (2006), 34–54; St. Petersburg Math. J., 18:1 (2007), 21–36
Citation in format AMSBIB
\Bibitem{BarRicSol06}
\by R.~W.~Barnard, C.~Richardson, A.~Yu.~Solynin
\paper A minimal area problem for nonvanishing functions
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 1
\pages 34--54
\mathnet{http://mi.mathnet.ru/aa59}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2225212}
\zmath{https://zbmath.org/?q=an:1122.30017}
\elib{https://elibrary.ru/item.asp?id=9212598}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 1
\pages 21--36
\crossref{https://doi.org/10.1090/S1061-0022-06-00941-1}
Linking options:
  • https://www.mathnet.ru/eng/aa59
  • https://www.mathnet.ru/eng/aa/v18/i1/p34
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:379
    Full-text PDF :140
    References:46
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024