Abstract:
The configuration space of a nonlinear sigma model is the space of maps from one manifold to another. This paper reviews the authors' work on nonlinear sigma models with target a homogeneous space. It begins with a description of the components, fundamental group, and cohomology of such configuration spaces, together with the physical interpretations of these results. The topological arguments given generalize to Sobolev maps. The advantages of representing homogeneous-space-valued maps by flat connections are described, with applications to the homotopy theory of Sobolev maps, and minimization problems for the Skyrme and Faddeev functionals. The paper concludes with some speculation about the possibility of using these techniques to define new invariants of manifolds.
Citation:
D. Auckly, L. Kapitanski, J. M. Speight, “Geometry and analysis in nonlinear sigma models”, Algebra i Analiz, 18:1 (2006), 3–33; St. Petersburg Math. J., 18:1 (2007), 1–19
\Bibitem{AucKapSpe06}
\by D.~Auckly, L.~Kapitanski, J.~M.~Speight
\paper Geometry and analysis in nonlinear sigma models
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 1
\pages 3--33
\mathnet{http://mi.mathnet.ru/aa58}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2225211}
\zmath{https://zbmath.org/?q=an:1118.58008}
\elib{https://elibrary.ru/item.asp?id=9212597}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 1
\pages 1--19
\crossref{https://doi.org/10.1090/S1061-0022-06-00940-X}
Linking options:
https://www.mathnet.ru/eng/aa58
https://www.mathnet.ru/eng/aa/v18/i1/p3
This publication is cited in the following 5 articles:
Kapitanski L., “Analytic Form of the Pontrjagin-Hopf Invariants”, Complex Analysis and Dynamical Systems IV, Pt 2: General Relativity, Geometry, and Pde, Contemporary Mathematics, 554, eds. Agranovsky M., BenArtzi M., Galloway G., Karp L., Reich S., Shoikhet D., Weinstein G., Zalcman L., Amer Mathematical Soc, 2011, 105–113
Auckly D., Kapitanski L., “The Pontrjagin–Hopf invariants for Sobolev maps”, Commun. Contemp. Math., 12:1 (2010), 121–181
Kholodenko A.L., “Veneziano amplitudes, spin chains, and string models”, Int. J. Geom. Methods Mod. Phys., 6:5 (2009), 769–803
Kholodenko A., “Veneziano amplitudes, spin chains and Abelian reduction of QCD”, J. Geom. Phys., 59:5 (2009), 600–619
Liu Luofei, “Homotopy counting S1- and S2-valued maps with prescribed dilatation”, Bull. Lond. Math. Soc., 41 (2009), 124–136