Abstract:
Let GG be a not necessarily split reductive group scheme over a commutative ring RR with 11. Given a parabolic subgroup PP of GG, the elementary group EP(R)EP(R) is defined to be the subgroup of G(R)G(R) generated by UP(R)UP(R) and UP−(R)UP−(R), where UPUP and UP−UP− are the unipotent radicals of PP and its opposite P−P− respectively. It is proved that if GG contains a Zariski locally split torus of rank 2, then the group EP(R)=E(R)EP(R)=E(R) does not depend on PP, and, in particular, is normal in G(R)G(R).
Keywords:
Reductive group scheme, elementary subgroup, Whitehead group, parabolic subgroup.
Citation:
V. Petrov, A. Stavrova, “Elementary subgroups of isotropic reductive groups”, Algebra i Analiz, 20:4 (2008), 160–188; St. Petersburg Math. J., 20:4 (2009), 625–644
\Bibitem{PetSta08}
\by V.~Petrov, A.~Stavrova
\paper Elementary subgroups of isotropic reductive groups
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 4
\pages 160--188
\mathnet{http://mi.mathnet.ru/aa525}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2473747}
\zmath{https://zbmath.org/?q=an:1206.20053}
\elib{https://elibrary.ru/item.asp?id=11568880}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 4
\pages 625--644
\crossref{https://doi.org/10.1090/S1061-0022-09-01064-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267802600006}
Linking options:
https://www.mathnet.ru/eng/aa525
https://www.mathnet.ru/eng/aa/v20/i4/p160
This publication is cited in the following 52 articles:
E. Yu. Voronetskii, “Lokalno izotropnye elementarnye gruppy”, Algebra i analiz, 36:2 (2024), 1–26
Roman Lubkov, Ilia Nekrasov, “Overgroups of exterior powers of an elementary group. levels”, Linear and Multilinear Algebra, 72:4 (2024), 563
N. A. Vavilov, “St. Petersburg School of Linear Groups: II. Early Works by Suslin”, Vestnik St.Petersb. Univ.Math., 57:1 (2024), 30
Andrei Lavrenov, Sergey Sinchuk, Egor Voronetsky, “Centrality of K2 for Chevalley groups: a pro-group approach”, Isr. J. Math., 2024
E. B. Plotkin, A. I. Generalov, N. S. Geldkhauzer, N. L. Gordeev, A. Yu. Luzgarev, V. V. Nesterov, I. A. Panin, V. A. Petrov, S. Yu. Pilyugin, A. V. Stepanov, A. K. Stavrova, V. G. Khalin, “O Nikolae Aleksandroviche Vavilove”, Voprosy teorii predstavlenii algebr i grupp. 40, Posvyaschaetsya pamyati Nikolaya Aleksandrovicha VAVILOVA, Zap. nauchn. sem. POMI, 531, POMI, SPb., 2024, 7–40
A. Stavrova, “Chevalley groups over Laurent polynomial rings”, Algebra i teoriya chisel. 7, Zap. nauchn. sem. POMI, 538, POMI, SPb., 2024, 152–159
Stavrova A., “A(1)-Invariance of Non-Stable K-1-Functors in the Equicharacteristic Case”, Indag. Math.-New Ser., 33:2 (2022), 322–333
Anastasia Stavrova, Alexei Stepanov, “Normal structure of isotropic reductive groups over rings”, Journal of Algebra, 2022
E. Yu. Voronetskii, “Twisted forms of classical groups”, St. Petersburg Math. J., 34:2 (2023), 179–204
Voronetsky E., “Centrality of K-2-Functor Revisited”, J. Pure Appl. Algebr., 225:4 (2021), 106547
Stavrova A., “Torsors of Isotropic Reductive Groups Over Laurent Polynomials”, Doc. Math., 26 (2021), 661–673
Stavrova A., “Chevalley Groups of Polynomial Rings Over Dedekind Domains”, J. Group Theory, 23:1 (2020), 121–132
Ambily A.A., Rao R.A., “Normality of Dser Elementary Orthogonal Group”, J. Pure Appl. Algebr., 224:7 (2020), UNSP 106283
Stavrova A., “On the Congruence Kernel of Isotropic Groups Over Rings”, Trans. Am. Math. Soc., 373:7 (2020), 4585–4626
Boelaert L., De Medts T., Stavrova A., “Moufang Sets and Structurable Division Algebras”, Mem. Am. Math. Soc., 259:1245 (2019), 1+
Stavrova A., “Isotropic Reductive Groups Over Discrete Hodge Algebras”, J. Homotopy Relat. Struct., 14:2 (2019), 509–524
Asok A., Hoyois M., Wendt M., “Affine Representability Results in a(1)-Homotopy Theory II: Principal Bundles and Homogeneous Spaces”, Geom. Topol., 22:2 (2018), 1181–1225
Hazrat R. Vavilov N. Zhang Z., “Multiple Commutator Formulas For Unitary Groups”, Isr. J. Math., 219:1 (2017), 287–330
Stavrova A., “Non-Stable K-1-Functors of Multiloop Groups”, Can. J. Math.-J. Can. Math., 68:1 (2016), 150–178
E. Yu. Voronetsky, “Normality of elementary subgroup in $\operatorname{Sp}(2,A)$”, J. Math. Sci. (N. Y.), 222:4 (2017), 386–393