Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 4, Pages 118–159 (Mi aa524)  

This article is cited in 6 scientific papers (total in 6 papers)

Research Papers

Generalized Fesenko reciprocity map

K. I. Ikedaa, E. Serbestb

a Department of Mathematics, Istanbul Bilgi University, Istanbul, Turkey
b Gümüş Gala Mahallesi, Istanbul, Turkey
Full-text PDF (473 kB) Citations (6)
References:
Abstract: The paper is a natural continuation and generalization of the works of Fesenko and of the authors. Fesenko's theory is carried over to infinite $APF$-Galois extensions $L$ over a local field $K$ with a finite residue-class field $\kappa_K$ of $q=p^f$ elements, satisfying $\mathbf{\mu}_p(K^\mathrm{sep})\subset K$ and $K\subset L\subset K_{\varphi^d}$, where the residue-class degree $[\kappa_L:\kappa_K]$ is equal to $d$. More precisely, for such extensions $L/K$ and a fixed Lubin–Tate splitting $\varphi$ over $K$, a 1-cocycle
$$ \mathbf{\Phi}_{L/K}^{(\varphi)}\colon\mathrm{Gal}(L/K)\to K^\times/N_{L_0/K}L_0^\times\times U_{\widetilde{\mathbb X}(L/K)}^\diamond/Y_{L/L_0} $$
where $L_0=L\cap K^{nr}$, is constructed, and its functorial and ramification-theoretic properties are studied. The case of $d=1$ recovers the theory of Fesenko.
Keywords: local fields, higher-ramification theory, $APF$-extensions Fontaine–Wintenberger field of norms, Fesenko reciprocity map, generalized Fesenko reciprocity map, non-abelian local class field theory.
Received: 20.10.2007
English version:
St. Petersburg Mathematical Journal, 2009, Volume 20, Issue 4, Pages 593–624
DOI: https://doi.org/10.1090/S1061-0022-09-01063-2
Bibliographic databases:
Document Type: Article
MSC: 11S37
Language: English
Citation: K. I. Ikeda, E. Serbest, “Generalized Fesenko reciprocity map”, Algebra i Analiz, 20:4 (2008), 118–159; St. Petersburg Math. J., 20:4 (2009), 593–624
Citation in format AMSBIB
\Bibitem{IkeSer08}
\by K.~I.~Ikeda, E.~Serbest
\paper Generalized Fesenko reciprocity map
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 4
\pages 118--159
\mathnet{http://mi.mathnet.ru/aa524}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2473746}
\zmath{https://zbmath.org/?q=an:1206.11140}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 4
\pages 593--624
\crossref{https://doi.org/10.1090/S1061-0022-09-01063-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267802600005}
Linking options:
  • https://www.mathnet.ru/eng/aa524
  • https://www.mathnet.ru/eng/aa/v20/i4/p118
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024