|
This article is cited in 6 scientific papers (total in 6 papers)
Research Papers
Generalized Fesenko reciprocity map
K. I. Ikedaa, E. Serbestb a Department of Mathematics, Istanbul Bilgi University, Istanbul, Turkey
b Gümüş Gala Mahallesi, Istanbul, Turkey
Abstract:
The paper is a natural continuation and generalization of the works of Fesenko and of the authors.
Fesenko's theory is carried over to infinite $APF$-Galois extensions $L$ over a local field $K$ with a finite residue-class field $\kappa_K$ of $q=p^f$ elements, satisfying $\mathbf{\mu}_p(K^\mathrm{sep})\subset K$ and $K\subset L\subset K_{\varphi^d}$, where the residue-class degree $[\kappa_L:\kappa_K]$ is equal to $d$. More precisely, for such extensions $L/K$ and a fixed Lubin–Tate splitting $\varphi$ over $K$, a 1-cocycle
$$
\mathbf{\Phi}_{L/K}^{(\varphi)}\colon\mathrm{Gal}(L/K)\to K^\times/N_{L_0/K}L_0^\times\times U_{\widetilde{\mathbb X}(L/K)}^\diamond/Y_{L/L_0}
$$
where $L_0=L\cap K^{nr}$, is constructed, and its functorial and ramification-theoretic
properties are studied. The case of $d=1$ recovers the theory of Fesenko.
Keywords:
local fields, higher-ramification theory, $APF$-extensions Fontaine–Wintenberger field of norms, Fesenko reciprocity map, generalized Fesenko reciprocity map, non-abelian local class field theory.
Received: 20.10.2007
Citation:
K. I. Ikeda, E. Serbest, “Generalized Fesenko reciprocity map”, Algebra i Analiz, 20:4 (2008), 118–159; St. Petersburg Math. J., 20:4 (2009), 593–624
Linking options:
https://www.mathnet.ru/eng/aa524 https://www.mathnet.ru/eng/aa/v20/i4/p118
|
|