Abstract:
It is shown that the integral of the scalar curvature of a closed Riemannian manifold can be bounded from above in terms of its dimension, diameter, and a lower bound for the sectional curvature.
Otis Chodosh, Chao Li, Douglas Stryker, “Volume growth of 3-manifolds with scalar curvature lower bounds”, Proc. Amer. Math. Soc., 151:10 (2023), 4501
Bo Zhu, “Comparison Theorem and Integral of Scalar Curvature on Three Manifolds”, J Geom Anal, 32:7 (2022)
Bo Zhu, “Geometry of positive scalar curvature on complete manifold”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2022:791 (2022), 225
John Lott, “On scalar curvature lower bounds and scalar curvature measure”, Advances in Mathematics, 408 (2022), 108612
Xu G., “Integral of Scalar Curvature on Non-Parabolic Manifolds”, J. Geom. Anal., 30:1 (2020), 901–909
Huang Sh., Tam L.-F., “Kahler- Ricci Flow With Unbounded Curvature”, Am. J. Math., 140:1 (2018), 189–220
Xu G., “Lower Bound of Ricci Flow'S Existence Time”, Bull. London Math. Soc., 47:5 (2015), 759–770
Cabezas-Rivas E., Wilking B., “How To Produce a Ricci Flow Via Cheeger-Gromoll Exhaustion”, J. Eur. Math. Soc., 17:12 (2015), 3153–3194
Gromov M., “Dirac and Plateau Billiards in Domains With Corners”, Cent. Eur. J. Math., 12:8 (2014), 1109–1156
Yang B., “On a Problem of Yau Regarding a Higher Dimensional Generalization of the Cohn-Vossen Inequality”, Math. Ann., 355:2 (2013), 765–781
Yang B., Zheng F., “U(N)-Invariant Kahler-Ricci Flow with Non-Negative Curvature”, Commun. Anal. Geom., 21:2 (2013), 251–294