Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 2, Pages 134–148 (Mi aa508)  

This article is cited in 14 scientific papers (total in 14 papers)

Research Papers

An upper bound for the curvature integral

Petrunin
References:
Abstract: It is shown that the integral of the scalar curvature of a closed Riemannian manifold can be bounded from above in terms of its dimension, diameter, and a lower bound for the sectional curvature.
Keywords: Sectional curvature, scalar curvature, Alexandrov space.
Received: 05.04.2007
English version:
St. Petersburg Mathematical Journal, 2009, Volume 20, Issue 2, Pages 255–265
DOI: https://doi.org/10.1090/S1061-0022-09-01046-2
Bibliographic databases:
Document Type: Article
MSC: 53B21
Language: Russian
Citation: Petrunin, “An upper bound for the curvature integral”, Algebra i Analiz, 20:2 (2008), 134–148; St. Petersburg Math. J., 20:2 (2009), 255–265
Citation in format AMSBIB
\Bibitem{Pet08}
\by Petrunin
\paper An upper bound for the curvature integral
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 2
\pages 134--148
\mathnet{http://mi.mathnet.ru/aa508}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2423998}
\zmath{https://zbmath.org/?q=an:1206.53048}
\elib{https://elibrary.ru/item.asp?id=11568871}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 2
\pages 255--265
\crossref{https://doi.org/10.1090/S1061-0022-09-01046-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267497500005}
Linking options:
  • https://www.mathnet.ru/eng/aa508
  • https://www.mathnet.ru/eng/aa/v20/i2/p134
  • This publication is cited in the following 14 articles:
    1. T. Fujioka, “A lower bound for the curvature integral under an upper curvature bound”, Algebra i analiz, 36:2 (2024), 131–160  mathnet
    2. Guoyi Xu, “Integral of scalar curvature on manifolds with a pole”, Proc. Amer. Math. Soc., 2024  crossref
    3. Jinmin Wang, Zhizhang Xie, Bo Zhu, Xingyu Zhu, “Positive scalar curvature meets Ricci limit spaces”, manuscripta math., 2024  crossref
    4. Otis Chodosh, Chao Li, Douglas Stryker, “Volume growth of 3-manifolds with scalar curvature lower bounds”, Proc. Amer. Math. Soc., 151:10 (2023), 4501  crossref
    5. Bo Zhu, “Comparison Theorem and Integral of Scalar Curvature on Three Manifolds”, J Geom Anal, 32:7 (2022)  crossref
    6. Bo Zhu, “Geometry of positive scalar curvature on complete manifold”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2022:791 (2022), 225  crossref
    7. John Lott, “On scalar curvature lower bounds and scalar curvature measure”, Advances in Mathematics, 408 (2022), 108612  crossref
    8. Xu G., “Integral of Scalar Curvature on Non-Parabolic Manifolds”, J. Geom. Anal., 30:1 (2020), 901–909  crossref  mathscinet  isi
    9. Huang Sh., Tam L.-F., “Kahler- Ricci Flow With Unbounded Curvature”, Am. J. Math., 140:1 (2018), 189–220  crossref  mathscinet  zmath  isi
    10. Xu G., “Lower Bound of Ricci Flow'S Existence Time”, Bull. London Math. Soc., 47:5 (2015), 759–770  crossref  mathscinet  zmath  isi  scopus
    11. Cabezas-Rivas E., Wilking B., “How To Produce a Ricci Flow Via Cheeger-Gromoll Exhaustion”, J. Eur. Math. Soc., 17:12 (2015), 3153–3194  crossref  mathscinet  zmath  isi  scopus
    12. Gromov M., “Dirac and Plateau Billiards in Domains With Corners”, Cent. Eur. J. Math., 12:8 (2014), 1109–1156  crossref  mathscinet  zmath  isi  scopus
    13. Yang B., “On a Problem of Yau Regarding a Higher Dimensional Generalization of the Cohn-Vossen Inequality”, Math. Ann., 355:2 (2013), 765–781  crossref  mathscinet  zmath  isi  scopus
    14. Yang B., Zheng F., “U(N)-Invariant Kahler-Ricci Flow with Non-Negative Curvature”, Commun. Anal. Geom., 21:2 (2013), 251–294  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:585
    Full-text PDF :228
    References:68
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025