Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 2, Pages 70–133 (Mi aa506)  

This article is cited in 27 scientific papers (total in 27 papers)

Research Papers

Representation theory of (modified) Reflection Equation Algebra of $GL(m|n)$ type

D. I. Gurevicha, P. N. Pyatovb, P. A. Saponovc

a USTV, Université de Valenciennes, Valenciennes, France
b Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna
c Institute for High Energy Physics, Russian Academy of Scienses
References:
Abstract: Let $R\colon V^{\otimes 2}\to V^{\otimes 2}$ be a Hecke type solution of the quantum Yang–Baxter equation (a Hecke symmetry). Then, the Hilbert–Poincaré series of the associated $R$-exterior algebra of the space $V$ is the ratio of two polynomials of degrees $m$ (numerator) and $n$ (denominator).
Under the assumption that $R$ is skew-invertible, a rigid quasitensor category $\mathrm{SW}(V_{(m|n)})$ of vector spaces is defined, generated by the space $V$ and its dual $V^*$, and certain numerical characteristics of its objects are computed. Moreover, a braided bialgebra structure is introduced in the modified reflection equation algebra associated with $R$, and the objects of the category $\mathrm{SW}(V_{(m|n)})$ are equipped with an action of this algebra. In the case related to the quantum group $U_q(sl(m))$, the Poisson counterpart of the modified reflection equation algebra is considered and the semiclassical term of the pairing defined via the categorical (or quantum) trace is computed.
Keywords: (Modified) reflection equation algebra, braiding, Hecke symmetry, Hilbert-Poincaré series, birank, Schur–Weyl category, (quantum) trace, (quantum) dimension, braided bialgebra.
Received: 13.07.2007
English version:
St. Petersburg Mathematical Journal, 2009, Volume 20, Issue 2, Pages 213–253
DOI: https://doi.org/10.1090/S1061-0022-09-01045-0
Bibliographic databases:
Document Type: Article
MSC: 81R50
Language: Russian
Citation: D. I. Gurevich, P. N. Pyatov, P. A. Saponov, “Representation theory of (modified) Reflection Equation Algebra of $GL(m|n)$ type”, Algebra i Analiz, 20:2 (2008), 70–133; St. Petersburg Math. J., 20:2 (2009), 213–253
Citation in format AMSBIB
\Bibitem{GurPyaSap08}
\by D.~I.~Gurevich, P.~N.~Pyatov, P.~A.~Saponov
\paper Representation theory of (modified) Reflection Equation Algebra of $GL(m|n)$ type
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 2
\pages 70--133
\mathnet{http://mi.mathnet.ru/aa506}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2423997}
\zmath{https://zbmath.org/?q=an:1206.81061}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 2
\pages 213--253
\crossref{https://doi.org/10.1090/S1061-0022-09-01045-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267497500004}
Linking options:
  • https://www.mathnet.ru/eng/aa506
  • https://www.mathnet.ru/eng/aa/v20/i2/p70
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:593
    Full-text PDF :263
    References:74
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024