Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1994, Volume 6, Issue 2, Pages 67–89 (Mi aa436)  

This article is cited in 10 scientific papers (total in 10 papers)

Research Papers

Construction of the classical R-matrices for the Toda and Calogero models

J. Avan, O. Babelon, M. Talon

L.RT.H.E. Université Paris VI (CNRS UA 280)
Abstract: We use the definition of the Calogero–Moser models as Hamiltonian reductions of geodesic motions on a group manifold to construct their R-matrices. In the Toda case, the analogous construction yields constant R-matrices. By contrast, for Calogero–Moser models they are dynamical objects.
Received: 26.09.1993
Bibliographic databases:
Document Type: Article
Language: English
Citation: J. Avan, O. Babelon, M. Talon, “Construction of the classical R-matrices for the Toda and Calogero models”, Algebra i Analiz, 6:2 (1994), 67–89; St. Petersburg Math. J., 6:2 (1995), 255–274
Citation in format AMSBIB
\Bibitem{AvaBabTal94}
\by J.~Avan, O.~Babelon, M.~Talon
\paper Construction of the classical $R$-matrices for the Toda and Calogero models
\jour Algebra i Analiz
\yr 1994
\vol 6
\issue 2
\pages 67--89
\mathnet{http://mi.mathnet.ru/aa436}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1290819}
\zmath{https://zbmath.org/?q=an:0824.58028|0820.58028}
\transl
\jour St. Petersburg Math. J.
\yr 1995
\vol 6
\issue 2
\pages 255--274
Linking options:
  • https://www.mathnet.ru/eng/aa436
  • https://www.mathnet.ru/eng/aa/v6/i2/p67
  • This publication is cited in the following 10 articles:
    1. Pusztai B.G., “on the Classical R-Matrix Structure of the Rational Bcn Ruijsenaars-Schneider-Van Diejen System”, Nucl. Phys. B, 900 (2015), 115–146  crossref  isi
    2. Jean Avan, Eric Ragoucy, “Rational Calogero–Moser model: explicit form and $r$-matrix of the second Poisson structure”, SIGMA, 8 (2012), 079, 13 pp.  mathnet  crossref  mathscinet
    3. A. V. Zotov, A. M. Levin, “Integrable Model of Interacting Elliptic Tops”, Theoret. and Math. Phys., 146:1 (2006), 45–52  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Fring, A, “Non-crystallographic reduction of generalized Calogero–Moser models”, Journal of Physics A-Mathematical and General, 39:5 (2006), 1115  crossref  mathscinet  zmath  adsnasa  isi
    5. Alekseevsky, D, “The Riemannian geometry of orbit spaces - the metric, geodesics, and integrable systems”, Publicationes Mathematicae-Debrecen, 62:3–4 (2003), 247  mathscinet  zmath  isi
    6. Braden, HW, “Classical r-matrices and the Feigin-Odesskii algebra via Hamiltonian and Poisson reductions”, Journal of Physics A-Mathematical and General, 36:25 (2003), 6979  crossref  mathscinet  zmath  adsnasa  isi
    7. Feher, L, “The non-dynamical r-matrices of the degenerate Calogero–Moser models”, Journal of Physics A-Mathematical and General, 33:43 (2000), 7739  crossref  mathscinet  zmath  adsnasa  isi
    8. Bangoura, M, “The classical dynamical Yang–Baxter equation and Lie algebroids”, Comptes Rendus de l Academie Des Sciences Serie i-Mathematique, 327:6 (1998), 541  crossref  mathscinet  zmath  adsnasa  isi
    9. G. E. Arutyunov, S. A. Frolov, L. O. Chekhov, “$R$-matrix quantization of the elliptic Ruijsenaars–Schneider model”, Theoret. and Math. Phys., 111:2 (1997), 536–562  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    10. G. E. Arutyunov, “Construction of trigonometric Toda $r$-matrices via Hamiltonian reduction of the cotangent bundle over loop groups”, Theoret. and Math. Phys., 113:1 (1997), 1209–1216  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:369
    Full-text PDF :258
    References:2
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025