Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1994, Volume 6, Issue 2, Pages 53–66 (Mi aa435)  

This article is cited in 7 scientific papers (total in 7 papers)

Research Papers

Integrability in the Hamiltonian Ñhern–Simons theory

A. Yu. Alekseev

Uppsala University
Abstract: We consider the moduli space of flat connections on the Riemann surface with marked points. The new efficient parametrization is suggested and used to construct an integrable model on the moduli space. A family of commuting Hamiltonians is extracted from the trace of the transfer matrix built from the Wilson line observables of the Chern–Simons theory. Our model appears to be gauge equivalent to XXZ magnetic chain with finite number of sites.
Received: 25.11.1993
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Yu. Alekseev, “Integrability in the Hamiltonian Ñhern–Simons theory”, Algebra i Analiz, 6:2 (1994), 53–66; St. Petersburg Math. J., 6:2 (1995), 241–253
Citation in format AMSBIB
\Bibitem{Ale94}
\by A.~Yu.~Alekseev
\paper Integrability in the Hamiltonian Ñhern--Simons theory
\jour Algebra i Analiz
\yr 1994
\vol 6
\issue 2
\pages 53--66
\mathnet{http://mi.mathnet.ru/aa435}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1290818}
\zmath{https://zbmath.org/?q=an:0824.58026|0819.58011}
\transl
\jour St. Petersburg Math. J.
\yr 1995
\vol 6
\issue 2
\pages 241--253
Linking options:
  • https://www.mathnet.ru/eng/aa435
  • https://www.mathnet.ru/eng/aa/v6/i2/p53
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Àëãåáðà è àíàëèç St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :133
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024