|
This article is cited in 3 scientific papers (total in 3 papers)
Research Papers
Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients
V. A. Sloushch, T. A. Suslina Saint Petersburg State University
Abstract:
In $L_2(\mathbb{R}^d;\mathbb{C}^n)$, we study a selfadjoint strongly elliptic differential operator
$\mathcal{A}_\varepsilon$ of order $2p$ with periodic coefficients depending on $\mathbf{x}/\varepsilon$. We obtain the following approximation for the resolvent $( {\mathcal A}_\varepsilon+I)^{-1}$ in the operator norm on $L_2(\mathbb{R}^d;\mathbb{C}^n)$:
$$
( {\mathcal A}_\varepsilon+I)^{-1} = ( {\mathcal A}^0+I)^{-1} + \sum_{j=1}^{2p-1}
\varepsilon^{j} {\mathcal K}_{j,\varepsilon} + O(\varepsilon^{2p}).
$$
Here ${\mathcal A}^0$ is the effective operator with constant coefficients and
${\mathcal K}_{j,\varepsilon}$, $j=1,\dots,2p-1$, are suitable correctors.
Keywords:
periodic differential operators, homogenization, operator error estimates, effective operator, correctors.
Received: 29.01.2023
Citation:
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, Algebra i Analiz, 35:2 (2023), 107–173; St. Petersburg Math. J., 35:2 (2024), 327–375
Linking options:
https://www.mathnet.ru/eng/aa1861 https://www.mathnet.ru/eng/aa/v35/i2/p107
|
Statistics & downloads: |
Abstract page: | 163 | Full-text PDF : | 4 | References: | 19 | First page: | 17 |
|