Abstract:
In L2(Rd;Cn), we study a selfadjoint strongly elliptic differential operator
Aε of order 2p with periodic coefficients depending on x/ε. We obtain the following approximation for the resolvent (Aε+I)−1 in the operator norm on L2(Rd;Cn):
(Aε+I)−1=(A0+I)−1+2p−1∑j=1εjKj,ε+O(ε2p).
Here A0 is the effective operator with constant coefficients and
Kj,ε, j=1,…,2p−1, are suitable correctors.
Citation:
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, Algebra i Analiz, 35:2 (2023), 107–173; St. Petersburg Math. J., 35:2 (2024), 327–375
\Bibitem{SloSus23}
\by V.~A.~Sloushch, T.~A.~Suslina
\paper Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients
\jour Algebra i Analiz
\yr 2023
\vol 35
\issue 2
\pages 107--173
\mathnet{http://mi.mathnet.ru/aa1861}
\transl
\jour St. Petersburg Math. J.
\yr 2024
\vol 35
\issue 2
\pages 327--375
\crossref{https://doi.org/10.1090/spmj/1807}
Linking options:
https://www.mathnet.ru/eng/aa1861
https://www.mathnet.ru/eng/aa/v35/i2/p107
This publication is cited in the following 3 articles:
S. E. Pastukhova, “On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems”, Math. Notes, 114:3 (2023), 322–338
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
A. A. Raev, V. A. Slousch, T. A. Suslina, “Usrednenie odnomernogo periodicheskogo operatora chetvertogo poryadka s singulyarnym potentsialom”, Matematicheskie voprosy teorii rasprostraneniya voln. 53, Zap. nauchn. sem. POMI, 521, POMI, SPb., 2023, 212–239