Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2023, Volume 35, Issue 2, Pages 86–106 (Mi aa1860)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

Around the Gauss theorem on the values of Euler's digamma function at rational points

K. A. Mirzoevab, T. A. Safonovac

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics
c Northern (Arctic) Federal University named after M. V. Lomonosov
References:
Abstract: We find representations of generating functions for the values of the Riemann zeta function at odd points and related numbers in terms of definite integrals of trigonometric functions depending on the parameter $a$. In particular, new integral representations for the Euler digamma function $\psi(a)$ are obtained. The resulting integrals are such that they can be calculated in terms of the hypergeometric series ${}_3F_{2}$ and ${}_4F_{3}$ for some values of the parameters and $z=1$. Moreover, if $a$ is a proper rational fraction, then they reduce to integrals of $R(\sin x, \cos x)$, where $R$ is a rational fractional function of two variables, and are explicitly calculated. In this case, various analogues of the Gauss theorem on the values of the function $\psi(a)$ at rational points and, in particular, one more proof of it are obtained.
Keywords: Gauss's theorem on the values of Euler's digamma function, integral representations of sums of series, values of hypergeometric series for rational values of parameters.
Funding agency Grant number
Russian Science Foundation 20-11-20261
Received: 15.06.2022
English version:
St. Petersburg Mathematical Journal, 2024, Volume 35, Issue 2, Pages 311–325
DOI: https://doi.org/10.1090/spmj/1806
Document Type: Article
Language: Russian
Citation: K. A. Mirzoev, T. A. Safonova, “Around the Gauss theorem on the values of Euler's digamma function at rational points”, Algebra i Analiz, 35:2 (2023), 86–106; St. Petersburg Math. J., 35:2 (2024), 311–325
Citation in format AMSBIB
\Bibitem{MirSaf23}
\by K.~A.~Mirzoev, T.~A.~Safonova
\paper Around the Gauss theorem on the values of Euler's digamma function at rational points
\jour Algebra i Analiz
\yr 2023
\vol 35
\issue 2
\pages 86--106
\mathnet{http://mi.mathnet.ru/aa1860}
\transl
\jour St. Petersburg Math. J.
\yr 2024
\vol 35
\issue 2
\pages 311--325
\crossref{https://doi.org/10.1090/spmj/1806}
Linking options:
  • https://www.mathnet.ru/eng/aa1860
  • https://www.mathnet.ru/eng/aa/v35/i2/p86
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:167
    Full-text PDF :9
    References:43
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024