Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2023, Volume 35, Issue 1, Pages 134–183 (Mi aa1848)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers

Donoghue $m$-functions for Singular Sturm–Liouville operators

F. Gesztesya, L. L. Littlejohna, R. Nicholsb, M. Piorkowskic, J. Stanfilld

a Department of Mathematics, Baylor University, Sid Richardson Bldg., 1410 S. 4th Street, Waco, TX 76706, USA
b Department of Mathematics (Dept. 6956), The University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
c Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
d Department of Mathematics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210, USA
References:
Abstract: Let $\dot A$ be a densely defined, closed, symmetric operator in the complex, separable Hilbert space $\mathcal{H}$ with equal deficiency indices and denote by $\mathcal{N}_i = \ker ((\dot A)^* - i I_{\mathcal{H}})$, $\dim (\mathcal{N}_i)=k\in \mathbb{N} \cup \{\infty\}$, the associated deficiency subspace of $\dot A$. If $A$ denotes a selfadjoint extension of $\dot A$ in $\mathcal{H}$, the Donoghue $m$-operator $M_{A,\mathcal{N}_i}^{Do} (\cdot)$ in $\mathcal{N}_i$ associated with the pair $(A,\mathcal{N}_i)$ is given by $ M_{A,\mathcal{N}_i}^{Do}(z)=zI_{\mathcal{N}_i} + (z^2+1) P_{\mathcal{N}_i} (A - z I_{\mathcal{H}})^{-1} P_{\mathcal{N}_i} \vert_{\mathcal{N}_i} , z\in \mathbb{C}\setminus \mathbb{R}, $ with $I_{\mathcal{N}_i}$ the identity operator in $\mathcal{N}_i$, and $P_{\mathcal{N}_i}$ the orthogonal projection in $\mathcal{H}$ onto $\mathcal{N}_i$.
Assuming the standard local integrability hypotheses on the coefficients $p, q,r$, we study all selfadjoint realizations corresponding to the differential expression $ \tau=\frac{1}{r(x)}[-\frac{d}{dx}p(x)\frac{d}{dx} + q(x)]$ for a.e. $x\in(a,b) \subseteq \mathbb{R}$, in $L^2((a,b); rdx)$, and, as the principal aim of this paper, systematically construct the associated Donoghue $m$-functions (respectively, $(2 \times 2)$ matrices) in all cases where $\tau$ is in the limit circle case at least at one interval endpoint $a$ or $b$.
Keywords: singular Sturm–Liouville operators, boundary values, boundary conditions, Donoghue $m$-functions.
Funding agency Grant number
National Science Foundation DMS-1852288
Austrian Science Fund W1245
R. N. would like to thank the U.S. National Science Foundation for summer support received under Grant DMS-1852288 in connection with REU Site\textup: Research Training for Undergraduates in Mathematical Analysis with Applications in Allied Fields. M. P. was supported by the Austrian Science Fund under Grant W1245.
Received: 20.07.2021
English version:
St. Petersburg Mathematical Journal, 2024, Volume 35, Issue 1, Pages 101–138
DOI: https://doi.org/10.1090/spmj/1795
Document Type: Article
Language: English
Citation: F. Gesztesy, L. L. Littlejohn, R. Nichols, M. Piorkowski, J. Stanfill, “Donoghue $m$-functions for Singular Sturm–Liouville operators”, Algebra i Analiz, 35:1 (2023), 134–183; St. Petersburg Math. J., 35:1 (2024), 101–138
Citation in format AMSBIB
\Bibitem{GesLitNic23}
\by F.~Gesztesy, L.~L.~Littlejohn, R.~Nichols, M.~Piorkowski, J.~Stanfill
\paper Donoghue $m$-functions for Singular Sturm--Liouville operators
\jour Algebra i Analiz
\yr 2023
\vol 35
\issue 1
\pages 134--183
\mathnet{http://mi.mathnet.ru/aa1848}
\transl
\jour St. Petersburg Math. J.
\yr 2024
\vol 35
\issue 1
\pages 101--138
\crossref{https://doi.org/10.1090/spmj/1795}
Linking options:
  • https://www.mathnet.ru/eng/aa1848
  • https://www.mathnet.ru/eng/aa/v35/i1/p134
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:80
    Full-text PDF :2
    References:19
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024