|
Research Papers
On Kitaev's determinant formula
A. Elgarta, M. Fraasb a Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
b Department of Mathematics, UC Davis, Davis, CA 95616, USA
Abstract:
A sufficient condition is established under which $\det(ABA^{-1}B^{-1})=1$ for a pair of bounded, invertible operators $A,B$ on a Hilbert space.
Keywords:
Schatten trace class, Fredholm operator, shift operators.
Received: 28.09.2021
Citation:
A. Elgart, M. Fraas, “On Kitaev's determinant formula”, Algebra i Analiz, 35:1 (2023), 184–191; St. Petersburg Math. J., 35:1 (2024), 139–144
Linking options:
https://www.mathnet.ru/eng/aa1849 https://www.mathnet.ru/eng/aa/v35/i1/p184
|
Statistics & downloads: |
Abstract page: | 90 | Full-text PDF : | 2 | References: | 22 | First page: | 10 |
|