Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2023, Volume 35, Issue 1, Pages 33–79 (Mi aa1845)  

Research Papers

The spectral form of the functional model for maximally dissipative operators: A Lagrange identity approach

M. Browna, M. Marlettaa, S. N. Nabokob, I. Woodc

a Cardiff University, Abacws, Senghennydd Road, Cardiff CF24 4AG, UK
b Dept. of Mathematics and Mathematical Physics, Staryj Peterhof, Uljanovskaja 1, 198904, St. Petersburg, Russia
c School of Mathematics, Statistics and Actuarial Sciences, Sibson Building, University of Kent, Canterbury, CT2 7FS, UK
References:
Abstract: This paper is a contribution to the theory of functional models. In particular, it develops the so-called spectral form of the functional model where the selfadjoint dilation of the operator is represented as the operator of multiplication by an independent variable in some auxiliary vector-valued function space. With the help of a Lagrange identity, in the present version the relationship between this auxiliary space and the original Hilbert space will be explicit. A simple example is provided.
Keywords: dilation, contractions, operator colligation, completely nonselfadjoint part.
Received: 21.09.2021
English version:
St. Petersburg Mathematical Journal, 2024, Volume 35, Issue 1, Pages 25–59
DOI: https://doi.org/10.1090/spmj/1792
Document Type: Article
Language: English
Citation: M. Brown, M. Marletta, S. N. Naboko, I. Wood, “The spectral form of the functional model for maximally dissipative operators: A Lagrange identity approach”, Algebra i Analiz, 35:1 (2023), 33–79; St. Petersburg Math. J., 35:1 (2024), 25–59
Citation in format AMSBIB
\Bibitem{BroMarNab23}
\by M.~Brown, M.~Marletta, S.~N.~Naboko, I.~Wood
\paper The spectral form of the functional model for maximally dissipative operators: A Lagrange identity approach
\jour Algebra i Analiz
\yr 2023
\vol 35
\issue 1
\pages 33--79
\mathnet{http://mi.mathnet.ru/aa1845}
\transl
\jour St. Petersburg Math. J.
\yr 2024
\vol 35
\issue 1
\pages 25--59
\crossref{https://doi.org/10.1090/spmj/1792}
Linking options:
  • https://www.mathnet.ru/eng/aa1845
  • https://www.mathnet.ru/eng/aa/v35/i1/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :1
    References:32
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024