|
Research Papers
Behavior of large eigenvalues for the two-photon asymmetric quantum Rabi model
A. Boutet de Monvela, M. Charifbc, L. Zielinskib a Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Paris Cité, 75205 Paris Cedex 13, France
b Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville EA 2597, Université du Littoral Côte d'Opale, F-62228 Calais, France
c Lebanese University, Faculty of Sciences, Department of Mathematics, P.O. Box 826 Tripoli, Lebanon
Abstract:
The asymptotic behavior of large eigenvalues is studied for the two-photon quantum Rabi model with a finite bias. It is proved that the spectrum of this Hamiltonian model consists of two eigenvalue sequences $\{E_n^+\}_{n=0}^{\infty}$, $\{E_n^-\}_{n=0}^{\infty}$, and their large $n$ asymptotic behavior with error term $\mathrm{O}(n^{-1/2})$ is described. The principal tool is the method of near-similarity of operators introduced by G. V. Rozenbljum and developed in works of J. Janas, S. Naboko, and E. A. Yanovich (Tur).
Keywords:
quantum Rabi model, unbounded selfadjoint operators, asymptotics of eigenvalues, discrete spectrum.
Received: 17.01.2022
Citation:
A. Boutet de Monvel, M. Charif, L. Zielinski, “Behavior of large eigenvalues for the two-photon asymmetric quantum Rabi model”, Algebra i Analiz, 35:1 (2023), 80–108; St. Petersburg Math. J., 35:1 (2024), 61–82
Linking options:
https://www.mathnet.ru/eng/aa1846 https://www.mathnet.ru/eng/aa/v35/i1/p80
|
Statistics & downloads: |
Abstract page: | 104 | Full-text PDF : | 1 | References: | 32 | First page: | 12 |
|