Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2022, Volume 34, Issue 4, Pages 214–221 (Mi aa1828)  

Research Papers

Symbol length of classes in Milnor $K$-groups

A. Chapman

School of Computer Science, Academic College of Tel-Aviv-Yaffo, Rabenu Yeruham St., P.O.B 8401 Yaffo, 6818211, Israel
References:
Abstract: Given a field $F$, a positive integer $m$ and an integer $n\geq 2$, it is proved that the symbol length of classes in Milnor's $K$-groups $K_n F/2^m K_n F$ that are equivalent to single symbols under the embedding into $K_n F/2^{m+1} K_n F$ is at most $2^{n-1}$ under the assumption that $F \supseteq \mu_{2^{m+1}}$. Since $K_2 F/2^m K_2 F \cong {_{2^m}Br(F)}$ for $n=2$, this coincides with the upper bound of $2$ (proved by Tignol in $1983$) for the symbol length of central simple algebras of exponent $2^m$ that are Brauer equivalent to a single symbol algebra of degree $2^{m+1}$. The cases where the embedding into $K_n F/2^{m+1} K_n F$ is of symbol length $2$, $3$, and $4$ (the last when $n=2$) are also considered. The paper finishes with the study of the symbol length for classes in $K_3/3^m K_3 F$ whose embedding into $K_3 F/3^{m+1} K_3 F$ is one symbol when $F \supseteq \mu_{3^{m+1}}$.
Keywords: algebraic $K$-Theory, Milnor $K$-Theory, symmetric bilinear forms, quadratic forms, symbol length, quaternion algebras.
Received: 18.01.2021
English version:
St. Petersburg Mathematical Journal, 2023, Volume 34, Issue 4, Pages 715–720
DOI: https://doi.org/10.1090/spmj/1775
Document Type: Article
Language: English
Citation: A. Chapman, “Symbol length of classes in Milnor $K$-groups”, Algebra i Analiz, 34:4 (2022), 214–221; St. Petersburg Math. J., 34:4 (2023), 715–720
Citation in format AMSBIB
\Bibitem{Cha22}
\by A.~Chapman
\paper Symbol length of classes in Milnor $K$-groups
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 4
\pages 214--221
\mathnet{http://mi.mathnet.ru/aa1828}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 4
\pages 715--720
\crossref{https://doi.org/10.1090/spmj/1775}
Linking options:
  • https://www.mathnet.ru/eng/aa1828
  • https://www.mathnet.ru/eng/aa/v34/i4/p214
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:93
    References:29
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024