Abstract:
Exponential polynomials satisfying a homogeneous equation of convolution type are called its elementary solutions. The article considers convolution-type operators in the complex domain that generalize the well-known operators of $q$-sided convolution and $\pi$-convolution. The properties of such operators are investigated and the general form of elementary solutions (a general elementary solution) of a homogeneous equation of the type of $q$-sided convolution is described.
Keywords:
homogeneous equations of convolution type, elementary solutions, general elementary solution.
Citation:
Yu. S. Saranchuk, A. B. Shishkin, “General elementary solution of a homogeneous $q$-sided convolution type equation”, Algebra i Analiz, 34:4 (2022), 188–213; St. Petersburg Math. J., 34:4 (2023), 695–713
\Bibitem{SarShi22}
\by Yu.~S.~Saranchuk, A.~B.~Shishkin
\paper General elementary solution of a homogeneous $q$-sided convolution type equation
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 4
\pages 188--213
\mathnet{http://mi.mathnet.ru/aa1827}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 4
\pages 695--713
\crossref{https://doi.org/10.1090/spmj/1774}
Linking options:
https://www.mathnet.ru/eng/aa1827
https://www.mathnet.ru/eng/aa/v34/i4/p188
This publication is cited in the following 2 articles:
A. A. Tatarkin, A. B. Shishkin, “Exponential Synthesis in the Kernel of a q-Sided Convolution Operator”, J Math Sci, 282:4 (2024), 581
A. A. Tatarkin, A. B. Shishkin, “Eksponentsialnyi sintez v yadre operatora $q$-storonnei svertki”, Issledovaniya po lineinym operatoram i teorii funktsii. 50, Zap. nauchn. sem. POMI, 512, POMI, SPb., 2022, 191–222