Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2022, Volume 34, Issue 3, Pages 93–114 (Mi aa1810)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

Functons of perturbed pairs of noncommuting dissipative operator

A. B. Aleksandrova, V. V. Pellerbcad

a С.-Петербургское отделение Математического института им. В. А. Стеклова Российской академии наук Фонтанка, 27, 191023 Санкт-Петербург, Россия
b Факультет математики и Компьютерных наук, С.-Петербургский Государственный Университет, Университетская наб., 7/9, 199034 Санкт-Петербург, Россия
c Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
d Российский Университет дружбы народов (РУДН), ул. Миклухо-Маклая 6, 117198, Москва, Россия
References:
Abstract: Let $f$ be a function belonging to the nonhomogeneous analytic Besov space $(\mathrm{\text{Б}}_{\infty,1}^1)_+(\mathbb{R}^2)$. For a pair $(L,M)$ of not necessarily commuting maximal dissipative operators, the function $f(L,M)$ is introduced as a densely defined linear. For $p\in[1,2]$, we prove that if $(L_1,M_1)$ and $(L_2,M_2)$ are pairs of not necessarily commuting maximal dissipative operators such that the two difeerences $L_1-L_2$ и $M_1-M_2$ belong to the Schatten–von Neumann class $\mathbf{S}_p$, then for every $f$ in $(\mathrm{\text{Б}}_{\infty,1}^1)_+(\mathbb{R}^2)$ the operator difference $f(L_1,M_1)-f(L_2,M_2)$ belongs to $\mathbf{S}_p$ and the following Lipschitz-type estimate holds true: $ \|f(L_1,M_1)-f(L_2,M_2)\|_{\mathbf{S}_p} \le\mathrm{const}\,\|f\|_{\mathrm{\text{Б}}_{\infty,1}^1}\max\big\{\|L_1-L_2\|_{\mathbf{S}_p},\|M_1-M_2\|_{\mathbf{S}_p}\big\}. $
Keywords: dissipative operator, Haagerup tensor product, Haagerup-type tensor products, semispectral measure, Besov classes, functions of noncommuting operators, Lipschitz-type estimates for functions of operators, Schatten–von Neumann classes.
Received: 21.10.2021
English version:
St. Petersburg Mathematical Journal, 2023, Volume 34, Issue 3, Pages 379–392
DOI: https://doi.org/10.1090/spmj/1758
Document Type: Article
Language: Russian
Citation: A. B. Aleksandrov, V. V. Peller, “Functons of perturbed pairs of noncommuting dissipative operator”, Algebra i Analiz, 34:3 (2022), 93–114; St. Petersburg Math. J., 34:3 (2023), 379–392
Citation in format AMSBIB
\Bibitem{AlePel22}
\by A.~B.~Aleksandrov, V.~V.~Peller
\paper Functons of perturbed pairs of noncommuting dissipative operator
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 3
\pages 93--114
\mathnet{http://mi.mathnet.ru/aa1810}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 3
\pages 379--392
\crossref{https://doi.org/10.1090/spmj/1758}
Linking options:
  • https://www.mathnet.ru/eng/aa1810
  • https://www.mathnet.ru/eng/aa/v34/i3/p93
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025