|
Expository Surveys
Stationary phase method, powers of functions, and applications to functional analysis
H. Quefféleca, R. Zaroufbc a Université Lille Nord de France, USTL, Laboratoire Paul Painlevé, U.M.R. CNRS 8524 et Fédération, CNRS Nord-Pas-de-Calais, FR 2956 F-59 655, Villeneuve d' Ascq Cedex, France
b Aix-Marseille Université, Laboratoire Apprentissage, Didactique, Evaluation, Formation, 32 Rue Eugène Cas CS 90279 13248, Marseille Cedex 04, France
c Department of Mathematics and Mechanics, St.Petersburg State University, 28, Universitetski pr., St. Petersburg, 198504, Russia
Abstract:
The utility of the (weighted) van der Corput inequalities or of the stationary phase method is illustrated with various examples borrowed from: differentiability issues (Riemann's function and related); functional analysis on Banach spaces or algebras of analytic functions (composition operators); and local Banach space geometry (Schäffer's problem).
Keywords:
stationary phase method, powers of functions, Blaschke factors, Wiener space, Dirichlet series, composition operators, Schäffer's problem, Toeplitz operators.
Received: 14.10.2021
Citation:
H. Queffélec, R. Zarouf, “Stationary phase method, powers of functions, and applications to functional analysis”, Algebra i Analiz, 34:3 (2022), 51–92; St. Petersburg Math. J., 34:3 (2023), 347–377
Linking options:
https://www.mathnet.ru/eng/aa1809 https://www.mathnet.ru/eng/aa/v34/i3/p51
|
|