Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2022, Volume 34, Issue 2, Pages 118–151 (Mi aa1803)  

Research Papers

Three dimensions of metric-measure spaces, Sobolev embeddings and optimal sign transport

N. Nikolski

Institut de Mathématiques de Bordeaux, France
References:
Abstract: A sign interlacing phenomenon for Bessel sequences, frames, and Riesz bases $ (u_{k})$ in $ L^{2}$ spaces over the spaces of homogeneous type $ \Omega =(\Omega, \rho, \mu )$ satisfying the doubling/halving conditions is studied. Under some relations among three basic metric-measure parameters of $ \Omega $, we obtain asymptotics for the mass moving norms $ \| u_{k}\| _{KR}$ in the sense of Kantorovich–Rubinstein, as well as for the singular numbers of the Lipschitz and Hajlasz–Sobolev embeddings. Our main observation shows that, quantitatively, the rate of convergence $ \| u_{k}\| _{KR}\to 0$ mostly depends on the Bernstein–Kolmogorov $n$-widths of a certain compact set of Lipschitz functions, and the widths themselves mostly depend on the interplay between geometric doubling and measure doubling/halving numerical parameters. The “more homogeneous” is the space, the sharper are the results.
Keywords: sign interlacing, Kantorovich–Rubinstein (Wasserstein) metrics, Riesz bases, frames, Bessel sequences, geometric doubling condition, measure halving and doubling conditions, $ p$-Schatten classes, dyadic cubes, Haar-like functions, Hajlasz–Sobolev spaces, Hadamard matrix.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1620
The author acknowledges the support of the Grant MON 075-15-2019-1620 of the Euler International Mathematical Institute, St. Petersburg.
Received: 14.12.2021
English version:
St. Petersburg Mathematical Journal, 2023, Volume 34, Issue 2, Pages 221–245
DOI: https://doi.org/10.1090/spmj/1752
Bibliographic databases:
Document Type: Article
Language: English
Citation: N. Nikolski, “Three dimensions of metric-measure spaces, Sobolev embeddings and optimal sign transport”, Algebra i Analiz, 34:2 (2022), 118–151; St. Petersburg Math. J., 34:2 (2023), 221–245
Citation in format AMSBIB
\Bibitem{Nik22}
\by N.~Nikolski
\paper Three dimensions of metric-measure spaces, Sobolev embeddings and optimal sign transport
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 2
\pages 118--151
\mathnet{http://mi.mathnet.ru/aa1803}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4567616}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 2
\pages 221--245
\crossref{https://doi.org/10.1090/spmj/1752}
Linking options:
  • https://www.mathnet.ru/eng/aa1803
  • https://www.mathnet.ru/eng/aa/v34/i2/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024