Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2022, Volume 34, Issue 2, Pages 95–117 (Mi aa1802)  

Research Papers

On local finite separability of finitely generated associative rings

S. I. Kublanovskii

ТПО «Северный Очаг» Санкт-Петербург, Россия
References:
Abstract: It is proved that analogs of the theorems of M. Hall and N. S. Romanovsky fail in the class of commutative rings. Necessary and sufficient conditions for local finite separability of monogenic rings is established. As a corollary, it is proved that a finitely generated torsion-free PI ring is locally finitely separable if and only if its additive group is finitely generated.
Keywords: finite pproximation, occurrence in a subring, monogenic ring, commutative ring, closedness in the profinite topology.
Received: 09.08.2021
English version:
St. Petersburg Mathematical Journal, 2023, Volume 34, Issue 2, Pages 205–220
DOI: https://doi.org/10.1090/spmj/1751
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. I. Kublanovskii, “On local finite separability of finitely generated associative rings”, Algebra i Analiz, 34:2 (2022), 95–117; St. Petersburg Math. J., 34:2 (2023), 205–220
Citation in format AMSBIB
\Bibitem{Kub22}
\by S.~I.~Kublanovskii
\paper On local finite separability of finitely generated associative rings
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 2
\pages 95--117
\mathnet{http://mi.mathnet.ru/aa1802}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4567615}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 2
\pages 205--220
\crossref{https://doi.org/10.1090/spmj/1751}
Linking options:
  • https://www.mathnet.ru/eng/aa1802
  • https://www.mathnet.ru/eng/aa/v34/i2/p95
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :3
    References:41
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024