Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2021, Volume 33, Issue 2, Pages 275–297 (Mi aa1755)  

This article is cited in 8 scientific papers (total in 8 papers)

Research Papers

Searchlight asymptotics for high-frequency scattering by boundary inflection

V. P. Smyshlyaev, I. V. Kamotski

Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UK
Full-text PDF (311 kB) Citations (8)
References:
Abstract: The paper is devoted to an inner problem for a whispering gallery high-frequency asymptotic mode's scattering by a boundary inflection. The related boundary-value problem for a Schrödinger equation on a half-line with a potential linear in both space and time appears fundamental for describing transitions from modal to scattered asymptotic patterns, and despite having been intensively studied over several decades remains largely unsolved. The solution past the inflection point is shown to have a “searchlight” asymptotics corresponding to a beam concentrated near the limit ray. Certain decay and smoothness properties of the related searchlight amplitude are established. Further interpretations of the above result are also discussed: the existence of the associated generalised wave operator, and of a version of a unitary scattering operator connecting the modal and scattered asymptotic regimes.
Keywords: diffraction, whispering gallery, boundary inflection, wave operator.
Received: 05.11.2020
English version:
St. Petersburg Mathematical Journal, 2022, Volume 33, Issue 2, Pages 387–403
DOI: https://doi.org/10.1090/spmj/1705
Document Type: Article
Language: English
Citation: V. P. Smyshlyaev, I. V. Kamotski, “Searchlight asymptotics for high-frequency scattering by boundary inflection”, Algebra i Analiz, 33:2 (2021), 275–297; St. Petersburg Math. J., 33:2 (2022), 387–403
Citation in format AMSBIB
\Bibitem{SmyKam21}
\by V.~P.~Smyshlyaev, I.~V.~Kamotski
\paper Searchlight asymptotics for high-frequency scattering by boundary inflection
\jour Algebra i Analiz
\yr 2021
\vol 33
\issue 2
\pages 275--297
\mathnet{http://mi.mathnet.ru/aa1755}
\transl
\jour St. Petersburg Math. J.
\yr 2022
\vol 33
\issue 2
\pages 387--403
\crossref{https://doi.org/10.1090/spmj/1705}
Linking options:
  • https://www.mathnet.ru/eng/aa1755
  • https://www.mathnet.ru/eng/aa/v33/i2/p275
  • This publication is cited in the following 8 articles:
    1. A. Gibbs, D.P. Hewett, D. Huybrechs, “Numerical evaluation of oscillatory integrals via automated steepest descent contour deformation”, Journal of Computational Physics, 501 (2024), 112787  crossref
    2. J.R. Ockendon, H. Ockendon, R.H. Tew, D.P. Hewett, A. Gibbs, “A caustic terminating at an inflection point”, Wave Motion, 125 (2024), 103257  crossref
    3. E. A. Zlobina, A. P. Kiselev, “Diffraction of a Whispering Gallery Mode at a Jumply Straightening of the Boundary”, Acoust. Phys., 69:2 (2023), 133  crossref
    4. Ekaterina A. Zlobina, Aleksei P. Kiselev, “The Malyuzhinets—Popov diffraction problem revisited”, Wave Motion, 121 (2023), 103172  crossref
    5. E. A. Zlobina, A. P. Kiselev, “Diffraction of a Whispering Gallery Mode at a Jumply Straightening of the Boundary”, Akustičeskij žurnal, 69:2 (2023), 119  crossref
    6. V. A. Sergeev, A. A. Fedotov, “On the Delocalization of a Quantum Particle under the Adiabatic Evolution Generated by a One-Dimensional Schrödinger Operator”, Math. Notes, 112:5 (2022), 726–740  mathnet  crossref  crossref  mathscinet
    7. J.R. Ockendon, H. Ockendon, “Thin-layer solutions to the Helmholtz equation in three dimensions”, Wave Motion, 115 (2022), 103069  crossref
    8. Berry V M., “Inflection Reflection: Images in Mirrors Whose Curvature Changes Sign”, Eur. J. Phys., 42:6 (2021), 065301  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:195
    Full-text PDF :48
    References:39
    First page:15
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025