Citation:
V. A. Sloushch, T. A. Suslina, “Threshold approximations for the resolvent of a polynomial nonnegative operator pencil”, Algebra i Analiz, 33:2 (2021), 233–274; St. Petersburg Math. J., 33:2 (2022), 355–385
\Bibitem{SloSus21}
\by V.~A.~Sloushch, T.~A.~Suslina
\paper Threshold approximations for the resolvent of a polynomial nonnegative operator pencil
\jour Algebra i Analiz
\yr 2021
\vol 33
\issue 2
\pages 233--274
\mathnet{http://mi.mathnet.ru/aa1754}
\transl
\jour St. Petersburg Math. J.
\yr 2022
\vol 33
\issue 2
\pages 355--385
\crossref{https://doi.org/10.1090/spmj/1704}
Linking options:
https://www.mathnet.ru/eng/aa1754
https://www.mathnet.ru/eng/aa/v33/i2/p233
This publication is cited in the following 7 articles:
S. E. Pastukhova, “On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems”, Math. Notes, 114:3 (2023), 322–338
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
A. A. Miloslova, T. A. Suslina, “Homogenization of the Higher-Order Parabolic Equations with Periodic Coefficients”, J Math Sci, 277:6 (2023), 959
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
S. E. Pastukhova, “Improved L2-approximation of resolvents in homogenization of fourth order operators”, St. Petersburg Math. J., 34:4 (2023), 611–634
A. A. Miloslova, T. A. Suslina, “Usrednenie parabolicheskikh uravnenii vysokogo poryadka s periodicheskimi koeffitsientami”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 130–191
T. A. Suslina, “Homogenization of the Higher-Order Hyperbolic Equations with Periodic Coefficients”, Lobachevskii J Math, 42:14 (2021), 3518