Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2021, Volume 33, Issue 2, Pages 233–274 (Mi aa1754)  

This article is cited in 7 scientific papers (total in 7 papers)

Research Papers

Threshold approximations for the resolvent of a polynomial nonnegative operator pencil

V. A. Sloushch, T. A. Suslina

Saint Petersburg State University
Full-text PDF (366 kB) Citations (7)
References:
Funding agency Grant number
Russian Science Foundation 17-11-01069
Received: 25.11.2020
English version:
St. Petersburg Mathematical Journal, 2022, Volume 33, Issue 2, Pages 355–385
DOI: https://doi.org/10.1090/spmj/1704
Document Type: Article
Language: Russian
Citation: V. A. Sloushch, T. A. Suslina, “Threshold approximations for the resolvent of a polynomial nonnegative operator pencil”, Algebra i Analiz, 33:2 (2021), 233–274; St. Petersburg Math. J., 33:2 (2022), 355–385
Citation in format AMSBIB
\Bibitem{SloSus21}
\by V.~A.~Sloushch, T.~A.~Suslina
\paper Threshold approximations for the resolvent of a polynomial nonnegative operator pencil
\jour Algebra i Analiz
\yr 2021
\vol 33
\issue 2
\pages 233--274
\mathnet{http://mi.mathnet.ru/aa1754}
\transl
\jour St. Petersburg Math. J.
\yr 2022
\vol 33
\issue 2
\pages 355--385
\crossref{https://doi.org/10.1090/spmj/1704}
Linking options:
  • https://www.mathnet.ru/eng/aa1754
  • https://www.mathnet.ru/eng/aa/v33/i2/p233
  • This publication is cited in the following 7 articles:
    1. S. E. Pastukhova, “On Operator Estimates of the Homogenization of Higher-Order Elliptic Systems”, Math. Notes, 114:3 (2023), 322–338  mathnet  crossref  crossref  mathscinet
    2. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. A. A. Miloslova, T. A. Suslina, “Homogenization of the Higher-Order Parabolic Equations with Periodic Coefficients”, J Math Sci, 277:6 (2023), 959  crossref
    4. V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375  mathnet  crossref
    5. S. E. Pastukhova, “Improved L2-approximation of resolvents in homogenization of fourth order operators”, St. Petersburg Math. J., 34:4 (2023), 611–634  mathnet  crossref  mathscinet
    6. A. A. Miloslova, T. A. Suslina, “Usrednenie parabolicheskikh uravnenii vysokogo poryadka s periodicheskimi koeffitsientami”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 130–191  mathnet  crossref
    7. T. A. Suslina, “Homogenization of the Higher-Order Hyperbolic Equations with Periodic Coefficients”, Lobachevskii J Math, 42:14 (2021), 3518  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :25
    References:63
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025