Abstract:
This is a continuation of the study of subgroups of the Chevalley group GP(Φ,R)GP(Φ,R) over a ring RR with root system ΦΦ and weight lattice PP that contain the elementary subgroup EP(Φ,K)EP(Φ,K) over a subring KK of RR. A. Bak and A. V. Stepanov considered recently the case of the symplectic group (simply connected group with root system Φ=ClΦ=Cl) in characteristic 22. In the current article, that result is extended to the case of Φ=BlΦ=Bl and for the groups with other weight lattices. Like in the Ya. N. Nuzhin's work on the case where RR is an algebraic extension of a nonperfect field KK and ΦΦ is not simply laced, the description involves carpet subgroups parametrized by two additive subgroups. In the second part of the article, the Bruhat decomposition is established for these carpet subgroups and it is proved that they have a split saturated Tits system. As a corollary, it is shown that they are simple as abstract groups.
Citation:
Ya. N. Nuzhin, A. V. Stepanov, “Subgroups of Chevalley groups of types BlBl and ClCl containing the group over a subring, and corresponding carpets”, Algebra i Analiz, 31:4 (2019), 198–224; St. Petersburg Math. J., 31:4 (2020), 719–737
\Bibitem{NuzSte19}
\by Ya.~N.~Nuzhin, A.~V.~Stepanov
\paper Subgroups of Chevalley groups of types $ B_l$ and $ C_l$ containing the group over a subring, and corresponding carpets
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 4
\pages 198--224
\mathnet{http://mi.mathnet.ru/aa1665}
\elib{https://elibrary.ru/item.asp?id=45487834}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 4
\pages 719--737
\crossref{https://doi.org/10.1090/spmj/1620}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000541709700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087629846}
Linking options:
https://www.mathnet.ru/eng/aa1665
https://www.mathnet.ru/eng/aa/v31/i4/p198
This publication is cited in the following 6 articles:
Yakov N. Nuzhin, “On the closedness of carpets of additive subgroups associated with a Chevalley group over a commutative ring”, Zhurn. SFU. Ser. Matem. i fiz., 16:6 (2023), 732–737
Ya. N. Nuzhin, “Defining relations for the carpet subgroups of Chevalley groups over fields”, Siberian Math. J., 63:5 (2022), 920–926
Yakov N. Nuzhin, “On pairs of additive subgroups associated with intermediate subgroups of groups of Lie type over nonperfect fields”, Zhurn. SFU. Ser. Matem. i fiz., 14:5 (2021), 604–610
Ya. N. Nuzhin, A. V. Stepanov, “Bruhat decomposition for carpet subgroups of Chevalley groups over fields”, Algebra and Logic, 60:5 (2021), 327–335
P. S. Badin, Ya. N. Nuzhin, E. N. Troyanskaya, “O slabo dopolnyaemykh kovrakh lieva tipa nad kommutativnymi koltsami”, Vladikavk. matem. zhurn., 23:4 (2021), 28–34
S. K. Franchuk, “O neprivodimykh kovrakh additivnykh podgrupp tipa G2G2 nad polyami kharakteristiki p>0p>0”, Vladikavk. matem. zhurn., 22:1 (2020), 78–84