Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 4, Pages 137–197 (Mi aa1664)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers

Homogenization of periodic parabolic systems in the L2(Rd)-norm with the corrector taken into account

Yu. M. Meshkova

Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
Full-text PDF (523 kB) Citations (2)
References:
Abstract: In L2(Rd;Cn), consider a selfadjoint matrix second order elliptic differential operator Bε, 0<ε1. The principal part of the operator is given in a factorized form, the operator contains first and zero order terms. The operator Bε is positive definite, its coefficients are periodic and depend on x/ε. The behavior in the small period limit is studied for the operator exponential eBεt, t0. The approximation in the (L2L2)-operator norm with error estimate of order O(ε2) is obtained. The corrector is taken into account in this approximation. The results are applied to homogenization of the solutions for the Cauchy problem for parabolic systems.
Keywords: periodic differential operators, parabolic systems, homogenization, operator error estimates.
Funding agency Grant number
Russian Science Foundation 14-21-00035
The research was supported by the Russian Science Foundation, grant no. 14-21-00035.
Received: 09.09.2018
English version:
St. Petersburg Mathematical Journal, 2020, Volume 31, Issue 4, Pages 675–718
DOI: https://doi.org/10.1090/spmj/1619
Bibliographic databases:
Document Type: Article
MSC: Primary 35B27; Secondary 35K45
Language: Russian
Citation: Yu. M. Meshkova, “Homogenization of periodic parabolic systems in the L2(Rd)-norm with the corrector taken into account”, Algebra i Analiz, 31:4 (2019), 137–197; St. Petersburg Math. J., 31:4 (2020), 675–718
Citation in format AMSBIB
\Bibitem{Mes19}
\by Yu.~M.~Meshkova
\paper Homogenization of periodic parabolic systems in the $ L_2(\mathbb{R}^d)$-norm with the corrector taken into account
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 4
\pages 137--197
\mathnet{http://mi.mathnet.ru/aa1664}
\elib{https://elibrary.ru/item.asp?id=45487046}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 4
\pages 675--718
\crossref{https://doi.org/10.1090/spmj/1619}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000541709700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087634285}
Linking options:
  • https://www.mathnet.ru/eng/aa1664
  • https://www.mathnet.ru/eng/aa/v31/i4/p137
  • This publication is cited in the following 2 articles:
    1. T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in Rd: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:358
    Full-text PDF :49
    References:69
    First page:25
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025