Abstract:
We consider a third-order nonselfadjoint differential operator with square summable coefficients whose domain is defined by quasiperiodic boundary conditions. For this operator, using the method of similar operators, we obtain an asymptotic behavior of eigenvalues, estimates of the deviations of spectral projections, and the equiconvergence of spectral decompositions.
Keywords:
third-order differential operator, spectrum, asymptotic behavior of eigenvalues, equiconvergence of spectral decompositions.
The work of the first author was supported by the Ministry of Education and Science of Russia and DAAD in the framework of the program “Mikhail Lomonosov” (no. 1.12791.2018/12.2).
Citation:
I. N. Braeutigam, D. M. Polyakov, “On the asymptotics of eigenvalues of a third-order differential operator”, Algebra i Analiz, 31:4 (2019), 16–47; St. Petersburg Math. J., 31:4 (2020), 585–606
\Bibitem{BraPol19}
\by I.~N.~Braeutigam, D.~M.~Polyakov
\paper On the asymptotics of eigenvalues of a third-order differential operator
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 4
\pages 16--47
\mathnet{http://mi.mathnet.ru/aa1661}
\elib{https://elibrary.ru/item.asp?id=45515932}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 4
\pages 585--606
\crossref{https://doi.org/10.1090/spmj/1616}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000541709700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087654752}
Linking options:
https://www.mathnet.ru/eng/aa1661
https://www.mathnet.ru/eng/aa/v31/i4/p16
This publication is cited in the following 8 articles:
Natalia P. Bondarenko, “Inverse Spectral Problem for the Third-Order Differential Equation”, Results Math, 78:5 (2023)
Maozhu Zhang, Kun Li, Yicao Wang, “Regular approximation of singular third-order differential operators”, Journal of Mathematical Analysis and Applications, 521:1 (2023), 126940
Natalia Pavlovna Bondarenko, “Linear differential operators with distribution coefficients of various singularity orders”, Math Methods in App Sciences, 46:6 (2023), 6639
A. G. Baskakov, I. A. Krishtal, N. B. Uskova, “O sglazhivanii operatornogo koeffitsienta differentsialnogo operatora pervogo poryadka v banakhovom prostranstve”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 28 yanvarya – 2 fevralya 2021 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 206, VINITI RAN, M., 2022, 3–14
Natalia P. Bondarenko, “Reconstruction of Higher-Order Differential Operators by Their Spectral Data”, Mathematics, 10:20 (2022), 3882
D. M. Polyakov, “Spectral Asymptotics of Two-Term Even Order Operators with Involution”, J Math Sci, 260:6 (2022), 806
N. P. Bondarenko, “Inverse spectral problems for arbitrary-order differential operators with distribution coefficients”, Mathematics, 9:22 (2021), 2989
D. M. Polyakov, “Formula for Regularized Trace of a Second Order Differential Operator with Involution”, J Math Sci, 251:5 (2020), 748