Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 4, Pages 1–15 (Mi aa1660)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

Orders that are étale-locally isomorphic

E. Bayer-Fluckigera, U. A. Firstb, M. Huruguena

a Department of Mathematics, École Polytechnique Fédérale de Lausanne
b Department of Mathematics, University of Haifa
Full-text PDF (252 kB) Citations (1)
References:
Abstract: Let $ R$ be a semilocal Dedekind domain with fraction field $ F$. It is shown that two hereditary $ R$-orders in central simple $ F$-algebras that become isomorphic after tensoring with $ F$ and with some faithfully flat étale $ R$-algebra are isomorphic. On the other hand, this fails for hereditary orders with involution. The latter stands in contrast to a result of the first two authors, who proved this statement for Hermitian forms over hereditary $ R$-orders with involution. The results can be restated by means of étale cohomology and can be viewed as variations of the Grothendieck-Serre conjecture on principal homogeneous spaces of reductive group schemes. The relationship with Bruhat-Tits theory is also discussed.
Keywords: hereditary order, maximal order, Dedekind domain, group scheme, reductive group, involution, central simple algebra.
Funding agency Grant number
Swiss National Science Foundation 200021_163188
This research was supported by a Swiss National Science Foundation grant #200021_163188.
Received: 09.07.2018
English version:
St. Petersburg Mathematical Journal, 2020, Volume 31, Issue 4, Pages 573–584
DOI: https://doi.org/10.1090/spmj/1615
Bibliographic databases:
Document Type: Article
Language: English
Citation: E. Bayer-Fluckiger, U. A. First, M. Huruguen, “Orders that are étale-locally isomorphic”, Algebra i Analiz, 31:4 (2019), 1–15; St. Petersburg Math. J., 31:4 (2020), 573–584
Citation in format AMSBIB
\Bibitem{BayFirHur19}
\by E.~Bayer-Fluckiger, U.~A.~First, M.~Huruguen
\paper Orders that are étale-locally isomorphic
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 4
\pages 1--15
\mathnet{http://mi.mathnet.ru/aa1660}
\elib{https://elibrary.ru/item.asp?id=45455172}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 4
\pages 573--584
\crossref{https://doi.org/10.1090/spmj/1615}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000541709700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087651483}
Linking options:
  • https://www.mathnet.ru/eng/aa1660
  • https://www.mathnet.ru/eng/aa/v31/i4/p1
  • This publication is cited in the following 1 articles:
    1. Guo N., “The Grothendieck-Serre Conjecture Over Semilocal Dedekind Rings”, Transform. Groups, 2020  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :61
    References:36
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025