Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 3, Pages 55–81 (Mi aa1652)  

Research Papers

Embedding of spaces and wavelet decomposition

Yu. K. Demyanovich

Saint Petersburg State University
References:
Abstract: Necessary and sufficient conditions of generalized smoothness (called pseudosmoothness) are found for coordinate functions of the finite element method (FEM). Embedding of FEM spaces on embedded subdivisions is discussed. Approximation relations on a differentiable manifold are considered. The concept of pseudosmoothness is formulated in terms of the coincidence of values for linear functionals on functions in question. The concept of maximum pseudosmoothness is introduced. Embedding criteria for spaces on embedded subdivisions are given. Wavelet expansion algorithms are developed for the spaces mentioned above.
Keywords: approximation relations, generalized smoothness, nesting of spaces, wavelet expansions, minimal splines, finite element method, functions on a manifold.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-08847_а
This work was partially supported by RFBR grant 15-01-008847.
Received: 03.12.2018
English version:
St. Petersburg Mathematical Journal, 2020, Volume 31, Issue 3, Pages 435–453
DOI: https://doi.org/10.1090/spmj/1607
Bibliographic databases:
Document Type: Article
MSC: 41A15
Language: Russian
Citation: Yu. K. Demyanovich, “Embedding of spaces and wavelet decomposition”, Algebra i Analiz, 31:3 (2019), 55–81; St. Petersburg Math. J., 31:3 (2020), 435–453
Citation in format AMSBIB
\Bibitem{Dem19}
\by Yu.~K.~Demyanovich
\paper Embedding of spaces and wavelet decomposition
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 3
\pages 55--81
\mathnet{http://mi.mathnet.ru/aa1652}
\elib{https://elibrary.ru/item.asp?id=43291858}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 3
\pages 435--453
\crossref{https://doi.org/10.1090/spmj/1607}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000531807300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085751763}
Linking options:
  • https://www.mathnet.ru/eng/aa1652
  • https://www.mathnet.ru/eng/aa/v31/i3/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:241
    Full-text PDF :30
    References:21
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024