Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 3, Pages 36–54 (Mi aa1651)  

Expository Surveys

On the defect of compactness in Sobolev embeddings on Riemannian manifolds

C. Tintarev

Sankt Olofsgatan 66B, 75330 Uppsala, Sweden
References:
Abstract: The defect of compactness for an embedding $ E\hookrightarrow F$ of two Banach spaces is the difference between a weakly convergent sequence in $ E$ and its weak limit, taken modulo terms vanishing in $ F$. We discuss the structure of the defect of compactness for (noncompact) Sobolev embeddings on manifolds, giving a brief outline of the theory based on isometry groups, followed by a summary of recent studies of the structure of bounded sequences without invariance assumptions.
Keywords: concentration compactness, profile decomposition, weak convergence, Sobolev spaces on manifolds.
Received: 30.08.2018
English version:
St. Petersburg Mathematical Journal, 2020, Volume 31, Issue 3, Pages 421–434
DOI: https://doi.org/10.1090/spmj/1606
Bibliographic databases:
Document Type: Article
Language: English
Citation: C. Tintarev, “On the defect of compactness in Sobolev embeddings on Riemannian manifolds”, Algebra i Analiz, 31:3 (2019), 36–54; St. Petersburg Math. J., 31:3 (2020), 421–434
Citation in format AMSBIB
\Bibitem{Tin19}
\by C.~Tintarev
\paper On the defect of compactness in Sobolev embeddings on Riemannian manifolds
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 3
\pages 36--54
\mathnet{http://mi.mathnet.ru/aa1651}
\transl
\jour St. Petersburg Math. J.
\yr 2020
\vol 31
\issue 3
\pages 421--434
\crossref{https://doi.org/10.1090/spmj/1606}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000531807300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085743577}
Linking options:
  • https://www.mathnet.ru/eng/aa1651
  • https://www.mathnet.ru/eng/aa/v31/i3/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:186
    Full-text PDF :30
    References:33
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024