Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2019, Volume 31, Issue 2, Pages 75–87 (Mi aa1638)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

Note on an eigenvalue problem for an ODE originating from a homogeneous $ p$-harmonic function

M. Akmana, J. Lewisb, A. Vogelc

a Department of Mathematics, University of Connecticut, Storrs, CT 06269-3009
b Department of Mathematics, University of Kentucky, Lexington, KY 40506
c Department of Mathematics, Syracuse University, Syracuse, NY, 13244
Full-text PDF (243 kB) Citations (3)
References:
Abstract: We discuss what is known about homogeneous solutions $ u$ to the $ p$-Laplace equation, $ p$ fixed, $ 10$ is $ p$-harmonic in the cone $\displaystyle K(\alpha )=\{x=(x_1,\dots , x_n) : x_1>\cos \alpha \vert x\vert\}\subset \mathbb{R}^n, n\geq 2,$     with continuous boundary value zero on $ \partial K(\alpha ) \setminus \{0\}$ when $ \alpha \in (0,\pi ]$. We also outline a proof of our new result concerning the exact value, $ \lambda =1-(n-1)/p$, for an eigenvalue problem in an ODE associated with $ u$ when $ u$ is $ p$ harmonic in $ K(\pi )$ and $ p>n-1$. Generalizations of this result are stated. Our result complements the work of Krol'-Maz'ya for $ 1<p\leq n-1$.
Keywords: $p$-Laplacian, boundary Harnack inequalities, homogeneous $p$-harmonic functions, eigenvalue problem.
Received: 23.10.2018
English version:
St. Petersburg Mathematical Journal, 2019, Volume 31, Issue 2, Pages 241–250
DOI: https://doi.org/10.1090/spmj/1594
Bibliographic databases:
Document Type: Article
MSC: Primary 35P99; Secondary 76B15, 35Q35
Language: English
Citation: M. Akman, J. Lewis, A. Vogel, “Note on an eigenvalue problem for an ODE originating from a homogeneous $ p$-harmonic function”, Algebra i Analiz, 31:2 (2019), 75–87; St. Petersburg Math. J., 31:2 (2019), 241–250
Citation in format AMSBIB
\Bibitem{AkmLewVog19}
\by M.~Akman, J.~Lewis, A.~Vogel
\paper Note on an eigenvalue problem for an ODE originating from a homogeneous $ p$-harmonic function
\jour Algebra i Analiz
\yr 2019
\vol 31
\issue 2
\pages 75--87
\mathnet{http://mi.mathnet.ru/aa1638}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 31
\issue 2
\pages 241--250
\crossref{https://doi.org/10.1090/spmj/1594}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000515138700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85106784444}
Linking options:
  • https://www.mathnet.ru/eng/aa1638
  • https://www.mathnet.ru/eng/aa/v31/i2/p75
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:292
    Full-text PDF :28
    References:42
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024