Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2017, Volume 29, Issue 1, Pages 70–110 (Mi aa1523)  

This article is cited in 9 scientific papers (total in 9 papers)

Research Papers

On the stabilizers of finite sets of numbers in the R. Thompson group FF

G. Golan, M. Sapir

Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA
Full-text PDF (731 kB) Citations (9)
References:
Abstract: The subgroups HUHU of the R. Thompson group FF that are stabilizers of finite sets UU of numbers in the interval (0,1)(0,1) are studied. The algebraic structure of HUHU is described and it is proved that the stabilizer HUHU is finitely generated if and only if UU consists of rational numbers. It is also shown that such subgroups are isomorphic surprisingly often. In particular, if finite sets U[0,1]U[0,1] and V[0,1]V[0,1] consist of rational numbers that are not finite binary fractions, and |U|=|V||U|=|V|, then the stabilizers of UU and VV are isomorphic. In fact these subgroups are conjugate inside a subgroup ˉF<Homeo([0,1])¯F<Homeo([0,1]) that is the completion of FF with respect to what is called the Hamming metric on FF. Moreover the conjugator can be found in a certain subgroup F<ˉFF<¯F which consists of possibly infinite tree-diagrams with finitely many infinite branches. It is also shown that the group FF is non-amenable.
Keywords: Thompson group FF, stabilizers.
Funding agency Grant number
Fulbright grant
Bar-Ilan University
National Science Foundation DMS 1418506
DMS 1318716
The research of the first author was supported in part by a Fulbright grant and a post-doctoral scholarship of Bar-Ilan University, the research of the second author was supported in part by the NSF grants DMS 1418506, DMS 1318716.
Received: 15.05.2016
English version:
St. Petersburg Mathematical Journal, 2018, Volume 29, Issue 1, Pages 51–79
DOI: https://doi.org/10.1090/spmj/1482
Bibliographic databases:
Document Type: Article
Language: English
Citation: G. Golan, M. Sapir, “On the stabilizers of finite sets of numbers in the R. Thompson group FF”, Algebra i Analiz, 29:1 (2017), 70–110; St. Petersburg Math. J., 29:1 (2018), 51–79
Citation in format AMSBIB
\Bibitem{GolSap17}
\by G.~Golan, M.~Sapir
\paper On the stabilizers of finite sets of numbers in the R.~Thompson group~$F$
\jour Algebra i Analiz
\yr 2017
\vol 29
\issue 1
\pages 70--110
\mathnet{http://mi.mathnet.ru/aa1523}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3660685}
\elib{https://elibrary.ru/item.asp?id=28960971}
\transl
\jour St. Petersburg Math. J.
\yr 2018
\vol 29
\issue 1
\pages 51--79
\crossref{https://doi.org/10.1090/spmj/1482}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000419174700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85010857445}
Linking options:
  • https://www.mathnet.ru/eng/aa1523
  • https://www.mathnet.ru/eng/aa/v29/i1/p70
  • This publication is cited in the following 9 articles:
    1. Arnaud Brothier, Dilshan Wijesena, “Jones' representations of R. Thompson's groups not induced by finite-dimensional ones”, Annales de l'Institut Fourier, 2025, 1  crossref
    2. Valeriano Aiello, Tatiana Nagnibeda, “On the 3-colorable subgroup ℱ and maximal subgroups of Thompson's group F”, Annales de l'Institut Fourier, 73:2 (2023), 783  crossref
    3. Gili Golan Polak, “The Generation Problem in Thompson Group 𝐹”, Memoirs of the AMS, 292:1451 (2023)  crossref
    4. V. S. Guba, “R. Thompson's group $F$ and the amenability problem”, Russian Math. Surveys, 77:2 (2022), 251–300  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. Sato T., “Direct Decompositions of Groups of Piecewise Linear Homeomorphisms of the Unit Interval”, Int. J. Algebr. Comput., 32:02 (2022), 289–305  crossref  mathscinet  zmath  isi  scopus
    6. D. Francoeur, “On the stabilisers of points in groups with micro-supported actions”, J. Group Theory, 24:3 (2021), 533–547  crossref  mathscinet  zmath  isi
    7. C. Donoven, F. Olukoya, “Conjugate Subgroups and Overgroups of V-N”, Int. J. Algebr. Comput., 30:6 (2020), 1129–1160  crossref  mathscinet  zmath  isi  scopus
    8. A. Brothier, V. F. R. Jones, “Pythagorean representations of thompson's groups”, J. Funct. Anal., 277:7 (2019), 2442–2469  crossref  mathscinet  zmath  isi  scopus
    9. Gelander Ts., Golan G., Juschenko K., “Invariable generation of Thompson groups”, J. Algebra, 478 (2017), 261–270  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:353
    Full-text PDF :110
    References:71
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025