Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2017, Volume 29, Issue 1, Pages 110–144 (Mi aa1524)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

Endomorphism rings of reductions of elliptic curves and Abelian varieties

Yu. G. Zarhin

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
Full-text PDF (343 kB) Citations (3)
References:
Abstract: Let $E$ be an elliptic curve without CM that is defined over a number field $K$. For all but finitely many non-Archimedean places $v$ of $K$ there is a reduction $E(v)$ of $E$ at $v$ that is an elliptic curve over the residue field $k(v)$ at $v$. The set of $v$'s with ordinary $E(v)$ has density 1 (Serre). For such $v$ the endomorphism ring $\operatorname{End}(E(v))$ of $E(v)$ is an order in an imaginary quadratic field.
We prove that for any pair of relatively prime positive integers $N$ and $M$ there are infinitely many non-Archimedean places $v$ of $K$ such that the discriminant $\boldsymbol\Delta(\mathbf v)$ of $\operatorname{End}(E(v))$ is divisible by $N$ and the ratio $\frac{\boldsymbol\Delta(\mathbf v)}N$ is relatively prime to $NM$. We also discuss similar questions for reductions of Abelian varieties.
The subject of this paper was inspired by an exercise in Serre's "Abelian $\ell$-adic representations and elliptic curves" and questions of Mihran Papikian and Alina Cojocaru.
Keywords: absolute Galois group, Abelian variety, general linear group, Tate module, Frobenius element.
Funding agency Grant number
Simons Foundation #246625
This work was partially supported by a grant from the Simons Foundation (#246625 to Yuri Zarkhin).
Received: 10.02.2016
English version:
St. Petersburg Mathematical Journal, 2018, Volume 29, Issue 1, Pages 81–106
DOI: https://doi.org/10.1090/spmj/1483
Bibliographic databases:
Document Type: Article
Language: English
Citation: Yu. G. Zarhin, “Endomorphism rings of reductions of elliptic curves and Abelian varieties”, Algebra i Analiz, 29:1 (2017), 110–144; St. Petersburg Math. J., 29:1 (2018), 81–106
Citation in format AMSBIB
\Bibitem{Zar17}
\by Yu.~G.~Zarhin
\paper Endomorphism rings of reductions of elliptic curves and Abelian varieties
\jour Algebra i Analiz
\yr 2017
\vol 29
\issue 1
\pages 110--144
\mathnet{http://mi.mathnet.ru/aa1524}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3660686}
\elib{https://elibrary.ru/item.asp?id=28960973}
\transl
\jour St. Petersburg Math. J.
\yr 2018
\vol 29
\issue 1
\pages 81--106
\crossref{https://doi.org/10.1090/spmj/1483}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000419174700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040089636}
Linking options:
  • https://www.mathnet.ru/eng/aa1524
  • https://www.mathnet.ru/eng/aa/v29/i1/p110
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:319
    Full-text PDF :87
    References:47
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024