Abstract:
Rubio de Francia proved the one-sided Littlewood–Paley inequality for arbitrary intervals in Lp, 2⩽p<∞. In this article, such an inequality is proved for the Walsh system.
This work was carried out during the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme. During the work on this article, the author made a visit to MSU (Michigan, USA) reimbursed from the grant DMS 1265549. The author is also supported by RFBR (grant no. 14-01-31163 and no. 14-01-00198).
Citation:
N. N. Osipov, “Littlewood–Paley–Rubio de Francia inequality for the Walsh system”, Algebra i Analiz, 28:5 (2016), 236–246; St. Petersburg Math. J., 28:5 (2017), 719–726
\Bibitem{Osi16}
\by N.~N.~Osipov
\paper Littlewood--Paley--Rubio de Francia inequality for the Walsh system
\jour Algebra i Analiz
\yr 2016
\vol 28
\issue 5
\pages 236--246
\mathnet{http://mi.mathnet.ru/aa1511}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3637591}
\elib{https://elibrary.ru/item.asp?id=31057036}
\transl
\jour St. Petersburg Math. J.
\yr 2017
\vol 28
\issue 5
\pages 719--726
\crossref{https://doi.org/10.1090/spmj/1469}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000406388600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85026329818}
Linking options:
https://www.mathnet.ru/eng/aa1511
https://www.mathnet.ru/eng/aa/v28/i5/p236
This publication is cited in the following 9 articles:
Viacheslav Borovitskiy, “Littlewood–Paley–Rubio de Francia inequality for multi‐parameter Vilenkin systems”, Mathematische Nachrichten, 297:3 (2024), 1092
St. Petersburg Math. J., 35:6 (2024), 1005–1011
V. Borovitskiy, “Littlewood–Paley–Rubio De Francia Inequality for the Two-Parameter Walsh System”, J Math Sci, 261:6 (2022), 746
Viacheslav Borovitskiy, Nikolay N. Osipov, Anton Tselishchev, “Burkholder meets Gundy: Bellman function method for general operators on martingales”, Advances in Mathematics, 410 (2022), 108746
A. Tselishchev, “On a Vector-Valued Extension of the Littlewood–Paley–Rubio De Francia Inequality for Walsh Functions”, J Math Sci, 268:6 (2022), 827
A. S. Tselishchev, “A Littlewood-Paley-Rubio de Francia inequality for bounded Vilenkin systems”, Sb. Math., 212:10 (2021), 1491–1502
A. Tselischev, “O vektornoznachnom neravenstve Littlvuda–Peli–Rubio de Fransia dlya sistemy Uolsha”, Issledovaniya po lineinym operatoram i teorii funktsii. 49, Zap. nauchn. sem. POMI, 503, POMI, SPb., 2021, 137–153
V. A. Borovitskii, N. N. Osipov, A. S. Tselishchev, “On the Bellman function method for operators on martingales”, Dokl. Math., 103:3 (2021), 118–121
V. Borovitskii, “Neravenstvo Litlvuda–Peli–Rubio de Fransia dlya dvuparametricheskoi sistemy Uolsha”, Issledovaniya po lineinym operatoram i teorii funktsii. 48, Zap. nauchn. sem. POMI, 491, POMI, SPb., 2020, 27–42