Abstract:
The notion of a sub-Möbius structure is introduced, and necessary and sufficient conditions are found under which a sub-Möbius structure is a Möbius structure. It is shown that on the boundary at infinity $\partial _{\infty } Y$ of every Gromov hyperbolic space $Y$ there is a canonical sub-Möbius structure invariant under the isometries of $Y$ and such that the sub-Möbius topology on $\partial _{\infty } Y$ coincides with the standard one.
\Bibitem{Buy16}
\by S.~V.~Buyalo
\paper M\"obius and sub-M\"obius structures
\jour Algebra i Analiz
\yr 2016
\vol 28
\issue 5
\pages 1--20
\mathnet{http://mi.mathnet.ru/aa1505}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3637585}
\elib{https://elibrary.ru/item.asp?id=31089475}
\transl
\jour St. Petersburg Math. J.
\yr 2017
\vol 28
\issue 5
\pages 555--568
\crossref{https://doi.org/10.1090/spmj/1463}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000406388600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85026296769}
Linking options:
https://www.mathnet.ru/eng/aa1505
https://www.mathnet.ru/eng/aa/v28/i5/p1
This publication is cited in the following 9 articles:
Cailian Yao, Tao Wang, “Optoelectronic Properties of Triply Twisted Möbius Carbon Nanobelt and the Design of Its Isomeric Nanomaterials”, Molecules, 29:19 (2024), 4621
V. V. Aseev, “Bounded turning in Möbius structures”, Siberian Math. J., 63:5 (2022), 819–833
V. V. Aseev, “Some remarks on Möbius structures”, Sib. elektron. matem. izv., 18:1 (2021), 160–167
S. V. Buyalo, “Symmetries of double ratios and an equation for Möbius structures”, St. Petersburg Math. J., 33:1 (2022), 47–56
V. V. Aseev, “Adherence of the images of points under multivalued quasimöbius mappings”, Siberian Math. J., 61:3 (2020), 391–402
V. V. Aseev, “Multivalued mappings with the quasimöbius property”, Siberian Math. J., 60:5 (2019), 741–756
V. V. Aseev, “Generalized angles in Ptolemaic Möbius structures”, Siberian Math. J., 59:2 (2018), 189–201
V. V. Aseev, “Generalized angles in Ptolemaic Möbius structures. II”, Siberian Math. J., 59:5 (2018), 768–777
S. V. Buyalo, “Möbius structures and timed causal spaces on the circle”, St. Petersburg Math. J., 29:5 (2018), 715–747