Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2015, Volume 27, Issue 6, Pages 234–241 (Mi aa1474)  

This article is cited in 4 scientific papers (total in 4 papers)

Research Papers

Rationally isotropic quadratic spaces are locally isotropic. III

I. Panina, K. Pimenovb

a St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka, 27, 191023, St. Petersburg, Russia
b Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ pr., 28, Petergof, 198504, St. Petersburg, Russia
Full-text PDF (207 kB) Citations (4)
References:
Abstract: Let $R$ be a regular semilocal domain containing a field such that all the residue fields are infinite. Let $K$ be the fraction field of $R$. Let $(R^n,q\colon R^n\to R)$ be a quadratic space over $R$ such that the quadric $\{q=0\}$ is smooth over $R$. If the quadratic space $(R^n,q\colon R^n\to R)$ over $R$ is isotropic over $K$, then there is a unimodular vector $v\in R^n$ such that $q(v)=0$. If $char(R)=2$, then in the case of even $n$ our assumption on $q$ is equivalent to the fact that $q$ is a nonsingular quadratic space and in the case of odd $n>2$ our assumption on $q$ is equivalent to the fact that $q$ is a semiregular quadratic space.
Keywords: quadratic form, regular local ring, isotropic vector, Grothendieck–Serre conjecture.
Funding agency Grant number
Russian Science Foundation 14-11-00456
Russian Foundation for Basic Research 12-01-33057
13-01-00429
Theorem 3 was proved with the support of the Russian Science Foundation (grant no. 14-11-00456). The research of the second author was partially supported by RFBR grant 12-01-33057 “Motivic homotopic cohomology theories on algebraic varieties” and by RFBR grant 13-01-00429 “Cohomological, classical, and motivic approach to algebraic numbers and algebraic varieties”.
Received: 15.06.2015
English version:
St. Petersburg Mathematical Journal, 2016, Volume 27, Issue 6, Pages 1029–1034
DOI: https://doi.org/10.1090/spmj/1433
Bibliographic databases:
Document Type: Article
Language: English
Citation: I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. III”, Algebra i Analiz, 27:6 (2015), 234–241; St. Petersburg Math. J., 27:6 (2016), 1029–1034
Citation in format AMSBIB
\Bibitem{PanPim15}
\by I.~Panin, K.~Pimenov
\paper Rationally isotropic quadratic spaces are locally isotropic.~III
\jour Algebra i Analiz
\yr 2015
\vol 27
\issue 6
\pages 234--241
\mathnet{http://mi.mathnet.ru/aa1474}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589229}
\elib{https://elibrary.ru/item.asp?id=26414166}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 6
\pages 1029--1034
\crossref{https://doi.org/10.1090/spmj/1433}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393181800012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84999143170}
Linking options:
  • https://www.mathnet.ru/eng/aa1474
  • https://www.mathnet.ru/eng/aa/v27/i6/p234
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024