Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2015, Volume 27, Issue 6, Pages 199–233 (Mi aa1473)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

Zeta integrals on arithmetic surfaces

T. Oliver

Heilbronn Institute for Mathematical Research, University of Bristol, UK
Full-text PDF (375 kB) Citations (1)
References:
Abstract: Given a (smooth, projective, geometrically connected) curve over a number field, one expects its Hasse–Weil L-function, a priori defined only on a right half-plane, to admit meromorphic continuation to C and satisfy a simple functional equation. Aside from exceptional circumstances, these analytic properties remain largely conjectural. One may formulate these conjectures in terms of zeta functions of two-dimensional arithmetic schemes, on which one has non-locally compact “analytic” adelic structures admitting a form of “lifted” harmonic analysis first defined by Fesenko for elliptic curves. In this paper we generalize his global results to certain curves of arbitrary genus by invoking a renormalizing factor which may be interpreted as the zeta function of a relative projective line. We are lead to a new interpretation of the “gamma factor” (defined in terms of the Hodge structures at archimedean places) and an (two-dimensional) adelic interpretation of the “mean-periodicity correspondence”, which is comparable to the conjectural automorphicity of Hasse–Weil L-functions.
Keywords: scheme of finite type, zeta function, local field, Hasse–Weil L-function, complete discrete valuation field, adeles.
Received: 27.02.2015
English version:
St. Petersburg Mathematical Journal, 2016, Volume 27, Issue 6, Pages 1003–1028
DOI: https://doi.org/10.1090/spmj/1432
Bibliographic databases:
Document Type: Article
Language: English
Citation: T. Oliver, “Zeta integrals on arithmetic surfaces”, Algebra i Analiz, 27:6 (2015), 199–233; St. Petersburg Math. J., 27:6 (2016), 1003–1028
Citation in format AMSBIB
\Bibitem{Oli15}
\by T.~Oliver
\paper Zeta integrals on arithmetic surfaces
\jour Algebra i Analiz
\yr 2015
\vol 27
\issue 6
\pages 199--233
\mathnet{http://mi.mathnet.ru/aa1473}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589228}
\elib{https://elibrary.ru/item.asp?id=26414165}
\transl
\jour St. Petersburg Math. J.
\yr 2016
\vol 27
\issue 6
\pages 1003--1028
\crossref{https://doi.org/10.1090/spmj/1432}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393181800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84999288605}
Linking options:
  • https://www.mathnet.ru/eng/aa1473
  • https://www.mathnet.ru/eng/aa/v27/i6/p199
  • This publication is cited in the following 1 articles:
    1. T. Oliver, “Automorphicity and mean-periodicity”, J. Math. Soc. Jpn., 69:1 (2017), 25–51  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:274
    Full-text PDF :86
    References:69
    First page:6
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025