Abstract:
A finite G group is said to be simply reducible (SR-group) if it has the following two properties: 1) each element of G is conjugate to its inverse; 2) the tensor product of every two irreducible representations is decomposed as a sum of irreducible representations of G with multiplicities not exceeding 1. It is proved that a finite SR-group is solvable if it has no composition factors isomorphic to the alternating groups A5 or A6.
Keywords:
Group, subgroup, irreducible representation, character, tensor product, real element.
Citation:
L. S. Kazarin, V. V. Yanishevskii, “On finite simply reducible groups”, Algebra i Analiz, 19:6 (2007), 86–116; St. Petersburg Math. J., 19:6 (2008), 931–951
\Bibitem{KazYan07}
\by L.~S.~Kazarin, V.~V.~Yanishevskii
\paper On finite simply reducible groups
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 6
\pages 86--116
\mathnet{http://mi.mathnet.ru/aa147}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2411640}
\zmath{https://zbmath.org/?q=an:1206.20005}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 6
\pages 931--951
\crossref{https://doi.org/10.1090/S1061-0022-08-01028-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267497100004}
Linking options:
https://www.mathnet.ru/eng/aa147
https://www.mathnet.ru/eng/aa/v19/i6/p86
This publication is cited in the following 11 articles:
Leandro Cagliero, Gonzalo Gutierrez, “G-tables and the Poisson structure of the even cohomology of cotangent bundle of the Heisenberg Lie group”, Journal of Algebra, 2025
Luan Y., “Automorphism Groups of Simply Reducible Groups”, Asian-Eur. J. Math., 14:06 (2021), 2150088
Luan Y., “Examples of Simply Reducible Groups”, J. Korean. Math. Soc., 57:5 (2020), 1187–1237
Kazarin L., “Factorizations of Finite Groups and Related Topics”, Algebr. Colloq., 27:1, SI (2020), 149–180
Ceccherini-Silberstein T., Scarabotti F., Tolli F., “Mackey's Theory of Tau-Conjugate Representations For Finite Groups”, Jap. J. Math., 10:1 (2015), 43–96
Amberg B., Kazarin L., “Large subgroups of a finite group of even order”, Proc. Amer. Math. Soc., 140:1 (2012), 65–68
S. V. Polyakov, “O tenzornykh kvadratakh neprivodimykh predstavlenii konechnykh pochti prostykh grupp. I”, Model. i analiz inform. sistem, 18:1 (2011), 130–141