Abstract:
Cyclotomic association schemes over a finite commutative ring R with identity are studied. The main goal is to identify the normal cyclotomic schemes C, i.e., those for which Aut(C)⩽AΓL1(R). The problem reduces to the case where the ring R is local, and in this case a necessary condition of normality in terms of the subgroup of R× that determines C is given. This condition is proved to be sufficient for a large class of local rings including the Galois rings of odd characteristic.
Citation:
S. A. Evdokimov, I. N. Ponomarenko, “Normal cyclotomic schemes over a finite commutative ring”, Algebra i Analiz, 19:6 (2007), 59–85; St. Petersburg Math. J., 19:6 (2008), 911–929
\Bibitem{EvdPon07}
\by S.~A.~Evdokimov, I.~N.~Ponomarenko
\paper Normal cyclotomic schemes over a finite commutative ring
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 6
\pages 59--85
\mathnet{http://mi.mathnet.ru/aa146}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2411639}
\zmath{https://zbmath.org/?q=an:1206.13029}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 6
\pages 911--929
\crossref{https://doi.org/10.1090/S1061-0022-08-01027-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267497100003}
Linking options:
https://www.mathnet.ru/eng/aa146
https://www.mathnet.ru/eng/aa/v19/i6/p59
This publication is cited in the following 4 articles:
Ikuta T., Munemasa A., “Butson-Type Complex Hadamard Matrices and Association Schemes on Galois Rings of Characteristic 4”, Spec. Matrices, 6:1 (2018), 1–10
Evdokimov S., Ponomarenko I., “Schur rings over a Galois ring of odd characteristic”, J. Combin. Theory Ser. A, 117:7 (2010), 827–841
Evdokimov S., Ponomarenko I., “Permutation group approach to association schemes”, European J. Combin., 30:6 (2009), 1456–1476
Muzychuk M., Ponomarenko I., “Schur rings”, European J. Combin., 30:6 (2009), 1526–1539