Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2007, Volume 19, Issue 3, Pages 76–105 (Mi aa120)  

This article is cited in 4 scientific papers (total in 4 papers)

Research Papers

$J_{p,m}$-inner dilations of matrix-valued functions that belong to the Carathódory class and admit pseudocontinuation

D. Z. Arov, N. A. Rozhenko

South Ukrainian State Pedagogical University, Odessa
Full-text PDF (296 kB) Citations (4)
References:
Abstract: The class $\ell^{p\times p}$ of matrix-valued functions $c(z)$ holomorphic in the unit disk $D=\{{z\in\mathbb{C}:|z|<1}\}$, having order $p$, and satisfying $\operatorname{Re}c(z)\ge 0$ in $D$ is considered, as well as its subclass $\ell^{p\times p}\Pi$ of matrix-valued functions $c(z)\in \ell^{p\times p}$ that have a meromorphic pseudocontinuation $c_-(z)$ to the complement $D_e=\{z\in\mathbb{C}:1<|z|\le\infty\}$ of the unit disk with bounded Nevanlinna characteristic in $D_e$.
For matrix-valued functions $c(z)$ of class $\ell^{p\times p}\Pi$ a representation as a block of a certain $J_{p,m}$-inner matrix-valued function $\theta(z)$ is obtained. The latter function has a special structure and is called the $J_{p,m}$-inner dilation of $c(z)$. The description of all such representations is given.
In addition, the following special $J_{p,m}$-inner dilations are considered and described: minimal, optimal, $*$-optimal, minimal and optimal, minimal and $*$-optimal. Also, $J_{p,m}$-inner dilations with additional properties are treated: real, symmetric, rational, or any combination of them under the corresponding restrictions on the matrix-valued function $c(z)$. The results extend to the case where the open upper half-plane $\mathbb{C}_+$ is considered instead of the unit disk $D$. For entire matrix-valued functions $c(z)$ with $\operatorname{Re}c(z)\ge 0$ in $\mathbb{C_+}$ and with Nevanlinna characteristic in $\mathbb{C}_-$, the $J_{p,m}$-inner dilations in $\mathbb{C}_+$ that are entire matrix-valued functions are also described.
Keywords: Holomorphic matrix-valued functions, dilations, pseudocontinuation.
Received: 09.11.2006
English version:
St. Petersburg Mathematical Journal, 2008, Volume 19, Issue 3, Pages 375–395
DOI: https://doi.org/10.1090/S1061-0022-08-01002-9
Bibliographic databases:
Document Type: Article
MSC: 20G35
Language: Russian
Citation: D. Z. Arov, N. A. Rozhenko, “$J_{p,m}$-inner dilations of matrix-valued functions that belong to the Carathódory class and admit pseudocontinuation”, Algebra i Analiz, 19:3 (2007), 76–105; St. Petersburg Math. J., 19:3 (2008), 375–395
Citation in format AMSBIB
\Bibitem{AroRoz07}
\by D.~Z.~Arov, N.~A.~Rozhenko
\paper $J_{p,m}$-inner dilations of matrix-valued functions that belong to the Carath\'odory class and admit pseudocontinuation
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 3
\pages 76--105
\mathnet{http://mi.mathnet.ru/aa120}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2340706}
\zmath{https://zbmath.org/?q=an:1210.47038}
\elib{https://elibrary.ru/item.asp?id=9540302}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 3
\pages 375--395
\crossref{https://doi.org/10.1090/S1061-0022-08-01002-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267653300002}
Linking options:
  • https://www.mathnet.ru/eng/aa120
  • https://www.mathnet.ru/eng/aa/v19/i3/p76
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025