|
This article is cited in 4 scientific papers (total in 4 papers)
Research Papers
$J_{p,m}$-inner dilations of matrix-valued functions that belong to the Carathódory class and admit pseudocontinuation
D. Z. Arov, N. A. Rozhenko South Ukrainian State Pedagogical University, Odessa
Abstract:
The class $\ell^{p\times p}$ of matrix-valued functions $c(z)$ holomorphic in the unit disk $D=\{{z\in\mathbb{C}:|z|<1}\}$, having order $p$, and satisfying $\operatorname{Re}c(z)\ge 0$ in $D$ is considered, as well as its subclass $\ell^{p\times p}\Pi$ of matrix-valued functions $c(z)\in \ell^{p\times p}$ that have a meromorphic pseudocontinuation $c_-(z)$ to the complement $D_e=\{z\in\mathbb{C}:1<|z|\le\infty\}$ of the unit disk with bounded Nevanlinna characteristic in $D_e$.
For matrix-valued functions $c(z)$ of class $\ell^{p\times p}\Pi$ a representation as a block of a certain $J_{p,m}$-inner matrix-valued function $\theta(z)$ is obtained. The latter function has a special structure and is called the $J_{p,m}$-inner dilation of $c(z)$. The description of all such representations is given.
In addition, the following special $J_{p,m}$-inner dilations are considered and described: minimal, optimal, $*$-optimal, minimal and optimal, minimal and $*$-optimal. Also, $J_{p,m}$-inner dilations with additional properties are treated: real, symmetric, rational, or any combination of them under the corresponding restrictions on the matrix-valued function $c(z)$. The results extend to the case where the open upper half-plane $\mathbb{C}_+$ is considered instead of the unit disk $D$. For entire matrix-valued functions $c(z)$ with $\operatorname{Re}c(z)\ge 0$ in $\mathbb{C_+}$ and with Nevanlinna characteristic in $\mathbb{C}_-$, the $J_{p,m}$-inner dilations in $\mathbb{C}_+$ that are entire matrix-valued functions are also described.
Keywords:
Holomorphic matrix-valued functions, dilations, pseudocontinuation.
Received: 09.11.2006
Citation:
D. Z. Arov, N. A. Rozhenko, “$J_{p,m}$-inner dilations of matrix-valued functions that belong to the Carathódory class and admit pseudocontinuation”, Algebra i Analiz, 19:3 (2007), 76–105; St. Petersburg Math. J., 19:3 (2008), 375–395
Linking options:
https://www.mathnet.ru/eng/aa120 https://www.mathnet.ru/eng/aa/v19/i3/p76
|
|