Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2007, Volume 19, Issue 3, Pages 1–75 (Mi aa119)  

This article is cited in 4 scientific papers (total in 4 papers)

Research Papers

Spectral subspaces of $L^p$ for $p<1$

A. B. Aleksandrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (685 kB) Citations (4)
References:
Abstract: Let $\Omega$ be an open subset of $\mathbb{R}^n$. Denote by $L^p_{\Omega}(\mathbb{R}^n)$ the closure in $L^p(\mathbb{R}^n)$ of the set of all functions $\varepsilon\in L^1(\mathbb{R}^n)\cap L^p(\mathbb{R}^n)$ whose Fourier transform has compact support contained in $\Omega$. The subspaces of the form $L^p_\Omega(\mathbb{R}^n)$ are called the spectral subspaces of $L^p(\mathbb{R}^n)$. It is easily seen that each spectral subspace is translation invariant; i.e., $f(x+a)\in L^p_\Omega(\mathbb{R}^n)$ for all $f\in L^p_\Omega(\mathbb{R}^n)$ and $a\in\mathbb{R}^n$. Sufficient conditions are given for the coincidence of $L^p_\Omega(\mathbb{R}^n)$ and $L^p(\mathbb{R}^n)$. In particular, an example of a set $\Omega$ is constructed such that the above spaces coincide for sufficiently small $p$ but not for all $p\in(0,1)$. Moreover, the boundedness of the functional $f\mapsto(\mathcal{F} f)(a)$ with $a\in\Omega$, which is defined initially for sufficiently “good” functions in $L^p_\Omega(\mathbb{R}^n)$, is investigated. In particular, estimates of the norm of this functional are obtained. Also, similar questions are considered for spectral subspaces of $L^p(G)$, where $G$ is a locally compact Abelian group.
Keywords: Translation invariant subspace, spectral subspace, Hardy classes, uniqueness set.
Received: 11.11.2006
English version:
St. Petersburg Mathematical Journal, 2008, Volume 19, Issue 3, Pages 327–374
DOI: https://doi.org/10.1090/S1061-0022-08-01001-7
Bibliographic databases:
Document Type: Article
MSC: 42B35
Language: Russian
Citation: A. B. Aleksandrov, “Spectral subspaces of $L^p$ for $p<1$”, Algebra i Analiz, 19:3 (2007), 1–75; St. Petersburg Math. J., 19:3 (2008), 327–374
Citation in format AMSBIB
\Bibitem{Ale07}
\by A.~B.~Aleksandrov
\paper Spectral subspaces of~$L^p$ for $p<1$
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 3
\pages 1--75
\mathnet{http://mi.mathnet.ru/aa119}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2340705}
\zmath{https://zbmath.org/?q=an:1202.42045}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 3
\pages 327--374
\crossref{https://doi.org/10.1090/S1061-0022-08-01001-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267653300001}
Linking options:
  • https://www.mathnet.ru/eng/aa119
  • https://www.mathnet.ru/eng/aa/v19/i3/p1
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025