Abstract:
An explicit construction of integral operators intertwining various quantum Toda chains is conjectured. Compositions of the intertwining operators provide recursive and QQ-operators for quantum Toda chains. In particular the authors earlier results on Toda chains corresponding to classical Lie algebra are extended to the generic BCnBCn- and Inozemtsev–Toda chains. Also, an explicit form of QQ-operators is conjectured for the closed Toda chains corresponding to the Lie algebras B∞B∞, C∞C∞, D∞D∞, the affine Lie algebras B(1)nB(1)n, C(1)nC(1)n, D(1)nD(1)n, D(2)nD(2)n, A(2)2n−1A(2)2n−1, A(2)2nA(2)2n, and the affine analogs of BCnBCn- and Inozemtsev–Toda chains.
Keywords:
quantum Toda Hamiltonians, elementary intertwining operator, recursive operator, quantization Pasquier–Gaudin integral QQ-operator.
Citation:
A. Gerasimov, D. Lebedev, S. Oblezin, “Quantum Toda chains intertwined”, Algebra i Analiz, 22:3 (2010), 107–141; St. Petersburg Math. J., 22:3 (2011), 411–435
This publication is cited in the following 5 articles:
A. A. Gerasimov, D. R. Lebedev, S. V. Oblezin, “On the quantum osp(1|2ℓ) Toda chain”, Theoret. and Math. Phys., 208:2 (2021), 1004–1017
van Diejen J.F., Emsiz E., “Wave Functions For Quantum Integrable Particle Systems Via Partial Confluences of Multivariate Hypergeometric Functions”, J. Differ. Equ., 268:8 (2020), 4525–4543
van Diejen J.F., Emsiz E., “Integrable Boundary Interactions For Ruijsenaars' Difference Toda Chain”, Commun. Math. Phys., 337:1 (2015), 171–189
G. Aminov, S. Arthamonov, A. Smirnov, A. Zotov, “Rational top and its classical r-matrix”, J. Phys. A, 47:30 (2014), 305207–19
A. A. Gerasimov, D. R. Lebedev, S. V. Oblezin, “New integral representations of Whittaker functions for classical Lie groups”, Russian Math. Surveys, 67:1 (2012), 1–92