Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 3, Pages 80–106 (Mi aa1187)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Non-Hermitian spin chains with inhomogeneous coupling

A. G. Bytsko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (739 kB) Citations (5)
References:
Abstract: An open Uq(sl2)Uq(sl2)-invariant spin chain of spin SS and length NN with inhomogeneous coupling is investigated as an example of a non-Hermitian (quasi-Hermitian) model. For several particular cases of such a chain, the ranges of the deformation parameter γγ are determined for which the spectrum of the model is real. For a certain range of γγ, a universal metric operator is constructed, and thus, the quasi-Hermitian nature of the model is established. This universal metric operator is nondynamical, its structure is determined only by the symmetry of the model. The results apply, in particular, to all known homogeneous Uq(sl2)Uq(sl2)-invariant integrable spin chains with nearest-neighbor interaction. In addition, the most general form of a metric operator for a quasi-Hermitian operator in finite-dimensional spaces is discussed.
Keywords: quasi-Hermitian Hamiltonians, quantum algebras, spin chains.
Received: 18.12.2009
English version:
St. Petersburg Mathematical Journal, 2011, Volume 22, Issue 3, Pages 393–410
DOI: https://doi.org/10.1090/S1061-0022-2011-01148-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. G. Bytsko, “Non-Hermitian spin chains with inhomogeneous coupling”, Algebra i Analiz, 22:3 (2010), 80–106; St. Petersburg Math. J., 22:3 (2011), 393–410
Citation in format AMSBIB
\Bibitem{Byt10}
\by A.~G.~Bytsko
\paper Non-Hermitian spin chains with inhomogeneous coupling
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 3
\pages 80--106
\mathnet{http://mi.mathnet.ru/aa1187}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2729941}
\zmath{https://zbmath.org/?q=an:1219.81160}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 3
\pages 393--410
\crossref{https://doi.org/10.1090/S1061-0022-2011-01148-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000292220800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871396879}
Linking options:
  • https://www.mathnet.ru/eng/aa1187
  • https://www.mathnet.ru/eng/aa/v22/i3/p80
  • This publication is cited in the following 5 articles:
    1. A Fring, “An Introduction to PT-Symmetric Quantum Mechanics-Time-Dependent Systems”, J. Phys.: Conf. Ser., 2448:1 (2023), 012002  crossref
    2. Viennot D., Aubourg L., “Quantum Chimera States”, Phys. Lett. A, 380:5-6 (2016), 678–683  crossref  mathscinet  isi  elib  scopus
    3. Bytsko A., “Tensor Space Representations of Temperley-Lieb Algebra Via Orthogonal Projections of Rank R >= 1”, J. Math. Phys., 56:8 (2015), 083502  crossref  mathscinet  zmath  isi  scopus
    4. Li C., Song Z., “Generation of Bell, W, and Greenberger-Horne-Zeilinger States Via Exceptional Points in Non-Hermitian Quantum Spin Systems”, Phys. Rev. A, 91:6 (2015), 062104  crossref  isi  elib  scopus
    5. Fring A., “Pt-Symmetric Deformations of Integrable Models”, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 371:1989, SI (2013), 20120046  crossref  mathscinet  zmath  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :87
    References:66
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025