Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2010, Volume 22, Issue 2, Pages 14–104 (Mi aa1177)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Cluster $\mathcal X$-varieties for dual Poisson–Lie groups. I

R. Brahami

Institut Mathématiques de Bourgogne, Dijon, France
References:
Abstract: We associate a family of cluster $\mathcal X$-varieties with the dual Poisson–Lie group $G^*$ of a complex semi-simple Lie group $G$ of adjoint type given with the standard Poisson structure. This family is described by the $W$-permutohedron associated with the Lie algebra $\mathfrak g$ of $G$, vertices being labeled by cluster $\mathcal X$-varieties and edges by new Poisson birational isomorphisms on appropriate seed $\mathcal X$-tori, called saltation. The underlying combinatorics is based on a factorization of the Fomin–Zelevinsky twist maps into mutations and other new Poisson birational isomorphisms on seed $\mathcal X$-tori, called tropical mutations (because they are obtained by a tropicalization of the mutation formula), associated with an enrichment of the combinatorics on double words of the Weyl group $W$ of $G$.
Keywords: cluster combinatorics, Poisson structure, tropical mutation, saltations.
Received: 22.09.2009
English version:
St. Petersburg Mathematical Journal, 2011, Volume 22, Issue 2, Pages 183–250
DOI: https://doi.org/10.1090/S1061-0022-2011-01138-0
Bibliographic databases:
Document Type: Article
Language: English
Citation: R. Brahami, “Cluster $\mathcal X$-varieties for dual Poisson–Lie groups. I”, Algebra i Analiz, 22:2 (2010), 14–104; St. Petersburg Math. J., 22:2 (2011), 183–250
Citation in format AMSBIB
\Bibitem{Bra10}
\by R.~Brahami
\paper Cluster $\mathcal X$-varieties for dual Poisson--Lie groups.~I
\jour Algebra i Analiz
\yr 2010
\vol 22
\issue 2
\pages 14--104
\mathnet{http://mi.mathnet.ru/aa1177}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2668124}
\zmath{https://zbmath.org/?q=an:1225.22011}
\transl
\jour St. Petersburg Math. J.
\yr 2011
\vol 22
\issue 2
\pages 183--250
\crossref{https://doi.org/10.1090/S1061-0022-2011-01138-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288688900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860127547}
Linking options:
  • https://www.mathnet.ru/eng/aa1177
  • https://www.mathnet.ru/eng/aa/v22/i2/p14
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:391
    Full-text PDF :110
    References:63
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024